Чтобы ответить на вопрос задачи, нужно найти длину основания сечения и его высоту. По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра. Она удалена от оси на 8 см. Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН. Перпендикуляр к хорде из центра окружности делит ее пополам. ВН=НС Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8. Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора) Тогда ВС=2*6=12 см АВ=ВС=12 см ⇒ Ѕ АВСД=12²=144 см²
По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра.
Она удалена от оси на 8 см.
Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН.
Перпендикуляр к хорде из центра окружности делит ее пополам.
ВН=НС
Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8.
Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора)
Тогда ВС=2*6=12 см
АВ=ВС=12 см ⇒
Ѕ АВСД=12²=144 см²
Точки A-F-C лежат на прямой Симсона точки B относительно треугольника EGD.
Объяснение:
Основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на прямой Симсона.
Точка B лежит на описанной окружности треугольника EGD (прямые углы EBG и EDG опираются на диаметр EG).
A и С - основания перпендикуляров из точки B на стороны треугольника EGD.
Тогда AC - прямая Симсона точки B относительно треугольника EGD.
(Прямая Симсона пересекает сторону EG в точке F, следовательно BF⊥EG)