Рассмотрим четырёхугольник NMHD: ∠N - прямой (по усл.), ∠D - прямой (по усл.), ∠H - прямой (по построению) ==> четыр. NMHD - прямоугольник
NM = DH = 12 (в прямоугольнике противоположные стороны равны)
HC = DC - DH = 18 - 12 = 6
∠BNM = ∠BDC = 90° ==> NM || DC (углы являются соответственными при NM || DC и секущей BD, а соответственные углы, образующиеся при параллельных прямых и их секущей, равны)
Рассмотрим ΔMHC и ΔBNM
∠H = ∠N = 90°
∠DCB = ∠NMB (соответственные при NM || DC секущей BC)
==> ΔMHC ~ ΔBNM по двум углам
В подобных треугольниках соответственные стороны пропорциональны
Синус - отношение противолежащего катета к гипотенузе
Рассмотрим четырёхугольник NMHD: ∠N - прямой (по усл.), ∠D - прямой (по усл.), ∠H - прямой (по построению) ==> четыр. NMHD - прямоугольник
NM = DH = 12 (в прямоугольнике противоположные стороны равны)
HC = DC - DH = 18 - 12 = 6
∠BNM = ∠BDC = 90° ==> NM || DC (углы являются соответственными при NM || DC и секущей BD, а соответственные углы, образующиеся при параллельных прямых и их секущей, равны)
Рассмотрим ΔMHC и ΔBNM
∠H = ∠N = 90°
∠DCB = ∠NMB (соответственные при NM || DC секущей BC)
==> ΔMHC ~ ΔBNM по двум углам
В подобных треугольниках соответственные стороны пропорциональны
Синус - отношение противолежащего катета к гипотенузе
ответ: sinB = 0,75.
если все числа целые и периметр = 5, то стороны трапеции 1, 1, 1 и 2.
т.е. это равнобокая трапеция, у которой углы при основаниях равны.
Пусть трапеция АВСD, АВ и СD - бока =1 каждая, ВС - малое основание =1, AD - большое основание =2.
Из точки В опустим высоту BH
Рассмотрим полученный треугольник АВН
АВ=1
АН = (AD-ВС)/2=0,5
косинус угла А = АН/АВ = 0,5
следовательно, угол А=60градусов.
Угол D = углу А, т.к. трапеция равнобокая
следовательно сумма углов при большем основании (т.е. А и D) = 120
ответ: Г