25 см і 30 см
Объяснение:
Нехай ΔАВС - рівнобедрений, АВ = ВС, ∠ВАС < 60°. Бісектриса AD ділить висоту BЕ на відрізки BF = 27,5 см і FE = 16,5 см.
Знайти довжину відрізків BD та DC.
Розв'язання:
За властивістю бісектриси: АВ : АЕ = BF : FE = 27,5 : 16,5 = 5 : 3.
За теоремою Піфагора для ΔАВЕ:
AB² = AE² + BE²
(5x)² = (3x)² + (27,5 + 16,5)²
25х² = 9х² + 44²
16х² = 44²
(4х)² = 44²
4х = 44
х = 11
Отже, АВ = 5·11 = 55 см, АЕ = 3·11 = 33 см.
ВС = АВ = 55 см, АС = 2·АЕ = 33·2 = 66 см.
За властивістю бісектриси: ВD : DC = AB : AC = 55 : 66 = 5 : 6.
Нехай ВD = 5х, DC = 6х. Складемо рівняння:
BD + DC = BC
5х + 6х = 55
11х = 55
х = 5
ВD = 5·5 = 25 см
DC = 6·5 = 30 см
ответ:
1) т.к. а||b, то ∠1= ∠3= 130 как накрестлежащие(я обозначила ∠3 под углом 2)
∠3 и ∠2 смежные => ∠2 = 180 - ∠3= 180 - 130 = 50
ответ: б
2) т.к ∠вас + ∠dca = 180, то ав||сd
∠bdc = ∠a = 70, т.к они накрестлежащие
3)т.к ∠вмк = ∠вас, то мк||ас
т.к. мк||ас, то ∠асв + ∠мкс = 180
4)х = 1 часть
т.к. углы соответственные => 4х+5х= 180
9х=180
х=180/9
х=20
4х= 4*20 = 80
5х = 5*20 = 100
100> 80 => 5х> 4х
5)т.к. вс||аd, то ∠вка=∠каd ( как накрестлежащие)
т.к. ак - биссектриса, то ∠вак = ∠каd = ∠вка
т.к ∠вак = ∠вка, то △авк - равнобедренный
25 см і 30 см
Объяснение:
Нехай ΔАВС - рівнобедрений, АВ = ВС, ∠ВАС < 60°. Бісектриса AD ділить висоту BЕ на відрізки BF = 27,5 см і FE = 16,5 см.
Знайти довжину відрізків BD та DC.
Розв'язання:
За властивістю бісектриси: АВ : АЕ = BF : FE = 27,5 : 16,5 = 5 : 3.
За теоремою Піфагора для ΔАВЕ:
AB² = AE² + BE²
(5x)² = (3x)² + (27,5 + 16,5)²
25х² = 9х² + 44²
16х² = 44²
(4х)² = 44²
4х = 44
х = 11
Отже, АВ = 5·11 = 55 см, АЕ = 3·11 = 33 см.
ВС = АВ = 55 см, АС = 2·АЕ = 33·2 = 66 см.
За властивістю бісектриси: ВD : DC = AB : AC = 55 : 66 = 5 : 6.
Нехай ВD = 5х, DC = 6х. Складемо рівняння:
BD + DC = BC
5х + 6х = 55
11х = 55
х = 5
ВD = 5·5 = 25 см
DC = 6·5 = 30 см
ответ:
1) т.к. а||b, то ∠1= ∠3= 130 как накрестлежащие(я обозначила ∠3 под углом 2)
∠3 и ∠2 смежные => ∠2 = 180 - ∠3= 180 - 130 = 50
ответ: б
2) т.к ∠вас + ∠dca = 180, то ав||сd
∠bdc = ∠a = 70, т.к они накрестлежащие
3)т.к ∠вмк = ∠вас, то мк||ас
т.к. мк||ас, то ∠асв + ∠мкс = 180
4)х = 1 часть
т.к. углы соответственные => 4х+5х= 180
9х=180
х=180/9
х=20
4х= 4*20 = 80
5х = 5*20 = 100
100> 80 => 5х> 4х
5)т.к. вс||аd, то ∠вка=∠каd ( как накрестлежащие)
т.к. ак - биссектриса, то ∠вак = ∠каd = ∠вка
т.к ∠вак = ∠вка, то △авк - равнобедренный