Обозначим через х длину меньшего основания данной трапеции.
Согласно условию задачи, одно основание данной трапеции на 4 см больше другого, следовательно, длина большего основания данной трапеции составляет х + 4.
Также известно, что длина средней линии данной трапеции равна 8 см
Посколькуо в любой трапеции длина средней линии трапеции равна полусумме длин оснований этой трапеции, можем составить следующее уравнение
Объяснение:
(х + х + 4) / 2 = 8.
Решая данное уравнение, получаем:
2х + 4 = 8 * 2;
2х + 4 = 16;
2х = 16 - 4;
2х = 12;
х = 12 / 2;
х = 6 см.
Находим длину большего основания:
х + 4 = 6 + 4 = 10 см.
ответ: длины основании данной трапеции равны 6 см и 10 см.
Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
Обозначим через х длину меньшего основания данной трапеции.
Согласно условию задачи, одно основание данной трапеции на 4 см больше другого, следовательно, длина большего основания данной трапеции составляет х + 4.
Также известно, что длина средней линии данной трапеции равна 8 см
Посколькуо в любой трапеции длина средней линии трапеции равна полусумме длин оснований этой трапеции, можем составить следующее уравнение
Объяснение:
(х + х + 4) / 2 = 8.
Решая данное уравнение, получаем:
2х + 4 = 8 * 2;
2х + 4 = 16;
2х = 16 - 4;
2х = 12;
х = 12 / 2;
х = 6 см.
Находим длину большего основания:
х + 4 = 6 + 4 = 10 см.
ответ: длины основании данной трапеции равны 6 см и 10 см.
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.