ответ:Треугольник ЕDF согласно условию является равнобедренным,и по определению его боковые стороны равны между собой и равны углы при основании.
Если из вершины D на основание ЕF мы опустим перпендикуляр,а это и медиана и биссектриса,то получим два прямоугольных треугольника,которые равны между собой по третьему признаку равенства треугольников
ЕD=DF по условию ,как боковые стороны равнобедренного треугольника
EA=AF,т к DA медиана и она поделила основание треугольника ЕF на два равных отрезка
DA-общая сторона
Рассмотрим треугольник ЕDA
<DAE=90 градусов,т к DA высота и опущена на основание перпендикулярно
Зная гипотенузу треугольника DE (12 cм) и катет (5:2=2,5 см) вычислим углы треугольника
<E=78 градусов
<ЕDA=12 градусов
Т к DA является и биссектрисой угла D,то <D=12+12=24 градуса
Так как <Е=<F, то и <F=78 градусов
Проверка
78+78+24=180 градусов
ответы на вопросы
1.Угол D меньше суммы углов при основании E и F
2.Угол D не больше суммы углов при основании Е и F
ответ:Треугольник ЕDF согласно условию является равнобедренным,и по определению его боковые стороны равны между собой и равны углы при основании.
Если из вершины D на основание ЕF мы опустим перпендикуляр,а это и медиана и биссектриса,то получим два прямоугольных треугольника,которые равны между собой по третьему признаку равенства треугольников
ЕD=DF по условию ,как боковые стороны равнобедренного треугольника
EA=AF,т к DA медиана и она поделила основание треугольника ЕF на два равных отрезка
DA-общая сторона
Рассмотрим треугольник ЕDA
<DAE=90 градусов,т к DA высота и опущена на основание перпендикулярно
Зная гипотенузу треугольника DE (12 cм) и катет (5:2=2,5 см) вычислим углы треугольника
<E=78 градусов
<ЕDA=12 градусов
Т к DA является и биссектрисой угла D,то <D=12+12=24 градуса
Так как <Е=<F, то и <F=78 градусов
Проверка
78+78+24=180 градусов
ответы на вопросы
1.Угол D меньше суммы углов при основании E и F
2.Угол D не больше суммы углов при основании Е и F
3.Угол D не больше угла Е и не больше угла F
4.Угол D меньше угла Е и меньше угла F
Объяснение:
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .