AC - диаметр, то угол ABC - прямой т. е треугольник наш прямоугольный.
OB - серединный перпендикуляр => AB||OB по теорме Фалеса, AO так относится к OC, как KB (k - cередина CB) к CK, т. е AO=OC (если не учили т.Фалеса, можно сказать, что ABC Подобен OCK по 2 углам, вывод точно такой же) . т. к. AO=OC, то O - центр окружности, OC -радиус. получаем, что <ВОС - центральный угол, он опирается на ту же дугу, что и вписанный угол CAB=1/2<ВОС =60 градусов. т. к ABC прямоугольный, то ACB=30. катет, противолежащий углу 30 градусов равен половине гипотенузы , т. е. AC=2*AB=12. радиус=1/2AC=6.
Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
AC - диаметр, то угол ABC - прямой т. е треугольник наш прямоугольный.
OB - серединный перпендикуляр => AB||OB по теорме Фалеса, AO так относится к OC, как KB (k - cередина CB) к CK, т. е AO=OC (если не учили т.Фалеса, можно сказать, что ABC Подобен OCK по 2 углам, вывод точно такой же) . т. к. AO=OC, то O - центр окружности, OC -радиус. получаем, что <ВОС - центральный угол, он опирается на ту же дугу, что и вписанный угол CAB=1/2<ВОС =60 градусов. т. к ABC прямоугольный, то ACB=30. катет, противолежащий углу 30 градусов равен половине гипотенузы , т. е. AC=2*AB=12. радиус=1/2AC=6.
ответ:6
Построим окружность с центром в точке О и радиусом R.
Проведём две равные хорды: AB и CD.
Соединим центр окружности с крайними точками хорд AB и CD.
Рассмотрим треугольники AOB и COD. По условию AB и CD равны. Так как точки A, B, C и D лежат на окружности, OA, OB, OC и OD - радиусы (они проведены от центра окружности до точки, лежащей на окружности) и, соответственно, равны.
Так как AB = CD, OA = OD, OB = OC, то треугольники AOB и COD равны по третьему признаку равенства треугольников (т.е. по трём сторонам). Значит, их соответствующие углы тоже равны. Следовательно, угол AOB равен углу COD.
Что и требовалось доказать.