Рисуете рисунок. У меня основание AC. По условию 2d=ac, ac=4r. Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника. S=1/2*h*a S=p*r а-сторона треугольника, р-полупериметр. Значит p*r=1/2*h*a Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r. p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r * Можно разделить на 4r и умножить на 2 обе части. Слева останется r+5, а справа Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
Задача 1. S=1/2*СD*СЕ*sin(C)=(1/2)*6*8*√(3)/2=12*√(3). Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a). cos(a)=(36+49-64)/84=0,25 Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное. длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41), b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41). Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°), PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37). Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3). С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).
Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника.
S=1/2*h*a
S=p*r
а-сторона треугольника, р-полупериметр.
Значит p*r=1/2*h*a
Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r.
p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r *
Можно разделить на 4r и умножить на 2 обе части.
Слева останется r+5, а справа
Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
Задача 2. На теорему косинусов: 8^2=6^2+7^2-2*6*7*cos(a).
cos(a)=(36+49-64)/84=0,25
Задача 3. Есть формула непосредственного вычисления, но я ее не помню, а где-то искать - лень. Но я могу дать решение, пусть и не самое оптимальное.
длины векторов а и в соответственно равны: а=√((-4)^2+5^2))=√(41),
b=√(5^2+(-4)^2))=√(41), расстояние между концами векторов равно √((-4-5)^2+(5+4)^2)=√(162). Вновь применяем теорему косинусов: (√(162))^2=(√(41))^2+(√(41))^2-2*√(41)*√(41)*cos(a), cos(a)=(41+41-162)/(2*41)=(-40/41).
Задача 4. Опять на теорему косинусов. PK^2=PM^2+MK^2-2*PM*MK*cos(120°),
PK=√(3^2+4^2-2*3*4*(-1/2))=√(9+16+12)=√(37).
Площадь треугольника S=(1/2)*PM*MK*sin(120°)=(1/2)*3*4*√(3)/2=3*√(3).
С другой стороны, S=PK*MN, откуда MN=S/PK=3*√(3)/√(37)=√(27/37).