Биссектрисы острых углов пересекаются под углом 135°(!)
Проведя 2 биссектрисы острых углов, мы получим тупоугольный треугольник, одна из сторон которого будет гипотенузой исходного прямоугольного. а 2 других стороны - отрезками, принадлежащими биссектрисам.
Сумма острых углов прямоугольного треугольника равна 90°, так как биссектриса делит угол на 2 равных угла, то получается, что во вновь образованном тупоугольном треугольнике сумма углов, прилежащих к "бывшей" гипотенузе, равна 90°:2=45°. А третий угол - угол пересечения биссектрис - равен 180°-45°=135°, что и требовалось доказать.
При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения - шаровой сектор радиуса R=ОА и высотой сектора h=DA. Объем его вычисляется по формуле: V= (2/3)*πR²*h. Рассмотрим сечение этого сектора (смотри рисунок): В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2. Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2. V=(2/3)*π*R²*R/2=(1/3)πR³.
Биссектрисы острых углов пересекаются под углом 135°(!)
Проведя 2 биссектрисы острых углов, мы получим тупоугольный треугольник, одна из сторон которого будет гипотенузой исходного прямоугольного. а 2 других стороны - отрезками, принадлежащими биссектрисам.
Сумма острых углов прямоугольного треугольника равна 90°, так как биссектриса делит угол на 2 равных угла, то получается, что во вновь образованном тупоугольном треугольнике сумма углов, прилежащих к "бывшей" гипотенузе, равна 90°:2=45°. А третий угол - угол пересечения биссектрис - равен 180°-45°=135°, что и требовалось доказать.
Объем его вычисляется по формуле: V= (2/3)*πR²*h.
Рассмотрим сечение этого сектора (смотри рисунок):
В прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит <OBD=30° (сумма острых углов прямоугольного треугольника равна 90°) и катет OD, лежащий против этого угла, равен половине гипотенузы ОВ (R), то есть OD=R/2.
Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2.
V=(2/3)*π*R²*R/2=(1/3)πR³.