Решение: из определения равнобедренного Δ-ка, которое гласит, что треугольник называется равнобедренным, если у него две стороны равны( они же называются боковыми( в нашей задаче это равные боковые стороны АВ и ВС), а третья сторона называется основанием( в нашей задаче это АС) следует, что наш Δ- ик- равнобедренный. по определению: внешним углом при данной вершине(в нашей задаче при вершине А) называется угол, смежный с внутренним углом Δ-ка при этой вершине. по теореме 2.1( в учебнике Погорелова): сумма смежных углов равна 180°.То есть внешний угол при вершине А, равный 167°( по условию задачи)+ внутренний смежный ему угол при этой же вершине А= 180°. Отсюда следует, что внутренний угол при вершине А= 180°-167°, то есть равен 13°. По теореме 3.3 в учебнике по геометрии Погорелова: В равнобедренном треугольнике углы при основании равны. А это значит, что внутренние углы( угол А и угол С) при основании АС равны. Мы уже нашла угол А, он равен 13°. Значит и угол С равен 13°.
Если периметр квадрата равен 24, легко найти длину одной стороны по формуле Р(кв.) = 4а, то есть 24 = 4а, получаем, что а = 6. Тогда можем воспользоваться теоремой Пифагора (т.к. у квадрата все углы прямые) и рассчитать длину диагонали как гипотенузу в прямоугольном ∆. Тогда получим, что х² = 6² + 6² = 2*36 = 72, а х = √72, то есть х = √(3² * 2² * 2) = 6√2. Мы берем только положительное значение, потому что арифметический квадратный корень ≥ 0, а длина строго больше 0. ответ: длина диагонали равна 6√2.