Медиана делит сторону, к которой она проведена, на два равных отрезка, также она является высотой т.е мы получаем два равных прямоугольных треугольника. Стороны равностороннего треугольника обозначим обозначим за Х Теперь рассмотрим один из прямоугольных треугольников: гипотенуза равна Х катет1 равен х/2(это половина стороны,к которой проведена высота) катет2 равен медиане по т пифагора найдем гипотенузу(х) х^2=(x/2)^2+(12 корней из 3)^2 x^2=432+x^2/4 (умножаем все на 4) 4x^2=1728+x^2 4x^2-x^2=1728 3x^2=1728 x^2=1728/3 x^2=576 х=корень из 576 х=24
Стороны равностороннего треугольника обозначим обозначим за Х
Теперь рассмотрим один из прямоугольных треугольников:
гипотенуза равна Х
катет1 равен х/2(это половина стороны,к которой проведена высота)
катет2 равен медиане
по т пифагора найдем гипотенузу(х)
х^2=(x/2)^2+(12 корней из 3)^2
x^2=432+x^2/4 (умножаем все на 4)
4x^2=1728+x^2
4x^2-x^2=1728
3x^2=1728
x^2=1728/3
x^2=576
х=корень из 576
х=24
Задача №11
При внешнем касании расстояние между центрами будет равно сумме радиусов: 40 см + 30 см = 70 см.
При внутреннем касании расстояние между центрами будет равно разнице радиусов: 40 см - 30 см = 10 см.
ответ: при внешнем касании 70 см, при внутреннем касании 10 см.
Задача №12
При внешнем касании расстояние между центрами будет равно сумме радиусов: 50 см + 25 см = 75 см.
При внутреннем касании расстояние между центрами будет равно разнице радиусов: 50 см - 25 см = 25 см.
Для внутреннего касания расстояние между центрами слишком большое, а для внешнего касания слишком короткое (не хватает 15 см).
Вывод: окружности с данными параметрами касаться не могут.