Итоговая контрольная работа по геометрии
8 класс
1 вариант
1. Найдите площадь равнобедренного треугольника со сторонами 10см, 10см и 12 см.
2. В параллелограмме две стороны 12 и 16 см, а один из углов 150°. Найдите площадь параллелограмма.
3. В равнобедренной трапеции боковая сторона равна 13 см, основания 10 см и 20 см. Найдите плошадь трапеции.
4. В треугольнике АВС прямая MN параллельная стороне АС, делит сторону ВС на отрезки BN=15 см и NC=5 см, а сторону АВ на ВМ и АМ. Найдите длину отрезка MN, если AC=15 см.
5. В прямоугольном треугольнике ABC ZC =90° AC=8 см, ZABC =45°. Найдите:
a)AC: б) высоту CD, проведенную к гипотенузе.
6. Дан прямоугольный треугольник АВС, у которого С-прямой, катет BC=6 см и ZA=60° Найдите:
a) остальные стороны ДАВС
б) площадь ДАВС
Проведем ее среднюю линию КМ
КМ=(АD+ВС):2=10
Средняя линия разделила исходную трапецию на две равнобедренные с равными высотами.
Соединим концы стороны СD с серединой К боковой стороны АВ.
Трапеция КВСМ - равнобедренная.
Высота равнобедренной трапеции делит ее большее основание на два отрезка, больший из которых равен полусумме оснований.
КО=(ВС+КМ):2=9
Средняя линия трапеции АВСD разделила ее высоту на два равных отрезка. СО=КН=7:2=3,5
Из прямоугольного треугольника КСО по т.Пифагора найдем СК - один из отрезков, соединяющих концы боковой стороны СD трапеции АВСD с серединой К другой боковой стороны АВ.
СК=√ (СО²+ОК²)=√(12,25+81)=√93,25=0,5√ 373
Второй отрезок DК из треугольника КНD по т.Пифагора:
DК=√(НДD²+КН²)=√(121+12,25)=0,5√533
1) найдем сторону правильного треугольника: а=Р/3=45/3=15
2) Зная сторону, найдем радиус окружности по формуле: R=(a√3)/3
Получим: R=(15√3)/3=5√3
3) Если правильный четырехугольник вписан в окружность, то радиус этой окружности равен половине диагонали: R=d/2, Подставим найденное значение R: 5√3=d/2. Отсюда d=10√3
4) Зная диагональ, найдем сторону правильного четырехугольника: а=d/√2
Получим: a=(10√3)/√2=5√6
ЗАДАЧА 2
1) Если площадь квадрата равна 72, то его сторона равна √72=6√2
2) Зная сторону квадрата, найдем радиус вписанной в него окружности: r=a/2=(6√2)/2=3√2
3) Зная радиус, найдем площадь круга: S=πR²=π(3√2)²=36π
ЗАДАЧА 3
Длину дуги ищем по формуле: l=(πRα)/180
Получим: l=(8π·150)/180=(20π)/3