Из капли мыльного раствора радиусом 1,7мм мальчик выдул шар радиусом 122мм. Вычисли толщину мыльной плёнки получившегося шара. Значение числа π в вычислениях округли до 3. Полученный результат округли до шести знаков после запятой.
1) Около любого ромба можно описать окружность.
Неверно, так как окружность можно описать около четырехугольника, сумма противолежащих углов которого равна 180°, а в ромбе противолежащие углы равны, и, если они не прямые (частный случай), то их сумма не равна 180°.
2) В любой треугольник можно вписать не менее одной окружности.
Неверно. В любой треугольник можно вписать единственную окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
Неверно. Центр описанной около треугольника окружности - точка пересечения серединных перпендикуляров к его сторонам.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
Неверно. Центр вписанной в треугольник окружности - точка пересечения его биссектрис.
1) Половина стороны основания равна √((√7)² - 2²) = √(7-4) = √3. Высота пирамиды равна √(2² -(√3)²) = √(4 - 3) = 1. Угол между плоскостью боковой грани пирамиды и плоскостью основания равен arc tg 1/√3 = 30°.
2) Угол между боковым ребром пирамиды и плоскостью основания равен arc tg (H/(d/2)) = arc tg (√3/(√2*(√2/2))) = arc tg √3 = 60°.
3) Проведём осевое сечение через боковые рёбра. Получим равнобедренный прямоугольный треугольник (сумма квадратов двух рёбер равна квадрату диагонали основания). Поэтому угол между боковым ребром пирамиды и плоскостью основания равен 45 градусов.
Неверно, так как окружность можно описать около четырехугольника, сумма противолежащих углов которого равна 180°, а в ромбе противолежащие углы равны, и, если они не прямые (частный случай), то их сумма не равна 180°.
2) В любой треугольник можно вписать не менее одной окружности.
Неверно. В любой треугольник можно вписать единственную окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения биссектрис.
Неверно. Центр описанной около треугольника окружности - точка пересечения серединных перпендикуляров к его сторонам.
4) Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.
Неверно. Центр вписанной в треугольник окружности - точка пересечения его биссектрис.
ответ: все утверждения неверны.
Высота пирамиды равна √(2² -(√3)²) = √(4 - 3) = 1.
Угол между плоскостью боковой грани пирамиды и плоскостью основания равен arc tg 1/√3 = 30°.
2) Угол между боковым ребром пирамиды и плоскостью основания равен arc tg (H/(d/2)) = arc tg (√3/(√2*(√2/2))) = arc tg √3 = 60°.
3) Проведём осевое сечение через боковые рёбра.
Получим равнобедренный прямоугольный треугольник (сумма квадратов двух рёбер равна квадрату диагонали основания).
Поэтому угол между боковым ребром пирамиды и плоскостью основания равен 45 градусов.