Ну тут изи
Треугольники ABO и ACO прямоугольные (Pадиус, проведенный в точку касания, перпендикулярен касательной). <ABO =<ACO =90 °. Центр окружности O лежит на биссектрисе угла образованными касательними
(<BAO =<CAO ).
Из прямоугольного ΔABO :
AO² =AB²+BO² =(5√3)² +5²= 5²*3 +5² =5²(3+1) =5²*4 =(5*2)²;
AO =5*2=10.
BO =AO/5 ⇒ <BAO =30° (катет лежащий против угла 30 градусов равен половине гипотенузы)
<BAC =2*<BAO =2*30° =60°.
: .
<BAO =α ; <BAC =2<BAO =2α.
tqα =BO/AB = 5/5√3 =1/√3.⇒ α =30° ; <BAC =2α =2*30° =60°.
Подробнее - на -
Ну тут изи
Треугольники ABO и ACO прямоугольные (Pадиус, проведенный в точку касания, перпендикулярен касательной). <ABO =<ACO =90 °. Центр окружности O лежит на биссектрисе угла образованными касательними
(<BAO =<CAO ).
Из прямоугольного ΔABO :
AO² =AB²+BO² =(5√3)² +5²= 5²*3 +5² =5²(3+1) =5²*4 =(5*2)²;
AO =5*2=10.
BO =AO/5 ⇒ <BAO =30° (катет лежащий против угла 30 градусов равен половине гипотенузы)
<BAC =2*<BAO =2*30° =60°.
: .
<BAO =α ; <BAC =2<BAO =2α.
tqα =BO/AB = 5/5√3 =1/√3.⇒ α =30° ; <BAC =2α =2*30° =60°.
Подробнее - на -