АВСД - трапеция , АВ=СД=37 см , ВС=13 см , ВД - биссектриса ∠В .
Так как ВД - биссектриса ∠В , то ∠АВД=∠СВД .
Так как ВС║АД и ВД - секущая, то ∠СВД=∠АДВ как внутренние накрест лежащие углы, и тогда ∠АВД=∠АДВ ⇒ ΔАВД - равнобедренный, АВ=ВД=37 см .
Проведём ВН⊥АД и СМ⊥АД . ВСМН - прямоугольник и МН=ВС=13 см
АН=МД=37-13=24 см , АН=МД=24:2=12 см .
Рассмотрим ΔАВН .
По теореме Пифагора ВН=√(АВ²-АН²)=√(37²-12²)=√1225=35 см .
ВН - высота трапеции.
Площадь трапеции:
S=(АД+BC)/2*ВН=(37+13)/2*35=50/2*35=25*35=875 см²
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9
АВСД - трапеция , АВ=СД=37 см , ВС=13 см , ВД - биссектриса ∠В .
Так как ВД - биссектриса ∠В , то ∠АВД=∠СВД .
Так как ВС║АД и ВД - секущая, то ∠СВД=∠АДВ как внутренние накрест лежащие углы, и тогда ∠АВД=∠АДВ ⇒ ΔАВД - равнобедренный, АВ=ВД=37 см .
Проведём ВН⊥АД и СМ⊥АД . ВСМН - прямоугольник и МН=ВС=13 см
АН=МД=37-13=24 см , АН=МД=24:2=12 см .
Рассмотрим ΔАВН .
По теореме Пифагора ВН=√(АВ²-АН²)=√(37²-12²)=√1225=35 см .
ВН - высота трапеции.
Площадь трапеции:
S=(АД+BC)/2*ВН=(37+13)/2*35=50/2*35=25*35=875 см²
построим прямую OA от точки O до прямой MH так что угол OAM = 90 градусов,
это и есть расстояние от точки O до прямой MН
Треугольники MOA и MOK равны это следует из следующего :
1 в треуг ОАМ угол OAM = 90 гр
в треуг OMK угол OKM = 90 гр
2 угол АMO = углу KMO (биссектриса угла)
3 сторона треугольника MO общая для обоих треугольников
4 также угол MOA и угол MOK в обоих треуг. равны, поскольку
сумма углов в треуг. = 180 гр. ( вычитая 180 - 90 гр - известный угол)
Этих условий достаточно чтобы сделать вывод, что треугольники равны.
Следовательно OK = OA = 9
ответ 9