В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
POMOGIf
POMOGIf
18.12.2022 02:42 •  Геометрия

Из точки а к плоскости проведены перпендикуляр и наклонная образующая с плоскостью угол 30 градусов найти длинну наклонной если растояние от точки а до плоскости равно 8

Показать ответ
Ответ:
Itupoypomogite1
Itupoypomogite1
25.10.2021 15:10

1. Найдем направляющий вектор прямой, являющейся пересечением плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Для этого вспомним, что в уравнении плоскости:

ax + by + cz + d = 0

коэффициенты (а, b, c) являются координатами вектора n, ортогонального плоскости. Так что мы имеем два вектора n1(1, -2, 3) и n2(1, 1, -5), которые ортогональны нашим плоскостям. Т. к. наша прямая лежит одновременно в обоих плоскостях, то она ортогональна обоим векторам n1 и n2. Соответственно направляющим вектором этой прямой может быть вектор, равный векторному произведению [n1, n2]. Итак, составляете матрицу векторного произведения, раскладываете ее по строке с символами i j k и получаете координаты направляющего вектора.

2. Т. к. плоскость параллельна оси ОХ, то на искомой плоскости всегда можно построить вектор с координатами (1, 0, 0). Действительно, предположим мы возьмем на плоскости точку М с координатами (а, b, c). Тогда на плоскости имеется и точка М1(a+1, b, c). Ведь если мы проведем из точки М (a, b, c) прямую, параллельную оси ОХ, то у всех точек этой прямой координаты у и z будут одинаковы, а изменяться будет лишь координата х.

Найдем координаты вектора ММ1(a +1 - a, b - b, с - с) = (1, 0, 0)

3. Теперь найдем точку, принадлежащую искомой плоскости. Предположим эта точка лежит на прямой пересечения двух плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Предположим также, что координата z этой точки равна 0. Тогда, подставив в уравнения плоскостей z = 0 получим систему уравнений:

x - 2y - 4 = 0

x + y + 9 = 0

Решая эту систему получаем:

х = -14/3

y = -13/3

Итак мы нашли координаты точки А (-14/3, -13/3, 0), которая принадлежит искомой плоскости.

4. Теперь возьмем на искомой плоскости произвольную точку Х (х, y, z) и найдем координаты вектора АХ (x +14/3, y + 13/3, z) который пробегает все точки плоскости.

5. Таким образом у нас есть 3 вектора: направляющий вектор прямой, координаты которого Вы нашли в п. 1, вектор ММ1(1, 0, 0) и вектор АХ (x +14/3, y + 13/3, z). Все эти векторы компланарны. А это значит, что их смешанное произведение равно 0. Теперь составляем матрицу смешанного произведения этих векторов, поставив на первую строчку координаты вектора АХ (x +14/3, y + 13/3, z). Далее разложив матрицу по первой строке, приведя коэффициенты при х, у, z и приравняв полученное выражение к 0 Вы получите искомое уравнение плоскости.

0,0(0 оценок)
Ответ:
likavudu
likavudu
25.10.2021 15:10

1. Найдем направляющий вектор прямой, являющейся пересечением плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Для этого вспомним, что в уравнении плоскости:

ax + by + cz + d = 0

коэффициенты (а, b, c) являются координатами вектора n, ортогонального плоскости. Так что мы имеем два вектора n1(1, -2, 3) и n2(1, 1, -5), которые ортогональны нашим плоскостям. Т. к. наша прямая лежит одновременно в обоих плоскостях, то она ортогональна обоим векторам n1 и n2. Соответственно направляющим вектором этой прямой может быть вектор, равный векторному произведению [n1, n2]. Итак, составляете матрицу векторного произведения, раскладываете ее по строке с символами i j k и получаете координаты направляющего вектора.

2. Т. к. плоскость параллельна оси ОХ, то на искомой плоскости всегда можно построить вектор с координатами (1, 0, 0). Действительно, предположим мы возьмем на плоскости точку М с координатами (а, b, c). Тогда на плоскости имеется и точка М1(a+1, b, c). Ведь если мы проведем из точки М (a, b, c) прямую, параллельную оси ОХ, то у всех точек этой прямой координаты у и z будут одинаковы, а изменяться будет лишь координата х.

Найдем координаты вектора ММ1(a +1 - a, b - b, с - с) = (1, 0, 0)

3. Теперь найдем точку, принадлежащую искомой плоскости. Предположим эта точка лежит на прямой пересечения двух плоскостей x-2y+3z-4=0 и x+y-5z+9=0. Предположим также, что координата z этой точки равна 0. Тогда, подставив в уравнения плоскостей z = 0 получим систему уравнений:

x - 2y - 4 = 0

x + y + 9 = 0

Решая эту систему получаем:

х = -14/3

y = -13/3

Итак мы нашли координаты точки А (-14/3, -13/3, 0), которая принадлежит искомой плоскости.

4. Теперь возьмем на искомой плоскости произвольную точку Х (х, y, z) и найдем координаты вектора АХ (x +14/3, y + 13/3, z) который пробегает все точки плоскости.

5. Таким образом у нас есть 3 вектора: направляющий вектор прямой, координаты которого Вы нашли в п. 1, вектор ММ1(1, 0, 0) и вектор АХ (x +14/3, y + 13/3, z). Все эти векторы компланарны. А это значит, что их смешанное произведение равно 0. Теперь составляем матрицу смешанного произведения этих векторов, поставив на первую строчку координаты вектора АХ (x +14/3, y + 13/3, z). Далее разложив матрицу по первой строке, приведя коэффициенты при х, у, z и приравняв полученное выражение к 0 Вы получите искомое уравнение плоскости.

Успехов!

Объяснение:

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота