Пусть А - точка, не принадлежащая плоскости α. АВ = 15 см и АС = 17 см - наклонные, АН - перпендикуляр к плоскости α.. Тогда ВН и СН - проекции наклонных на плоскость. Из двух наклонных, проведенных из одной точки, большую проекцию имеет большая наклонная. Пусть ВН = х, СН = х + 4
ΔАВН и ΔАСН прямоугольные. По теореме Пифагора выразим из них АН: АН² = АВ² - ВН² = 225 - х² АН² = АС² - СН² = 289 - (х + 4)²
АВ = 15 см и АС = 17 см - наклонные, АН - перпендикуляр к плоскости α..
Тогда ВН и СН - проекции наклонных на плоскость.
Из двух наклонных, проведенных из одной точки, большую проекцию имеет большая наклонная.
Пусть ВН = х, СН = х + 4
ΔАВН и ΔАСН прямоугольные. По теореме Пифагора выразим из них АН:
АН² = АВ² - ВН² = 225 - х²
АН² = АС² - СН² = 289 - (х + 4)²
225 - х² = 289 - (х + 4)²
225 - x² = 289 - x² - 8x - 16
8x = 48
x = 6
ВН = 6 см
СН = 10 см