Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при в равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
Первое - оч понятно: средняя линия - полусумма оснований, значит две средние линии равны сумме оснований. то есть нужно 48 (24*2) разбить на части, относящиеся как 2:3. а это 2/5 и 3/5 от нее: 48*2/5 = 96/5 = 19,2 48*3/5 = 144/5 = 28,8
Второе тоже не сложно: Снгова вспоминаем, что средняя линия - это среднее арифметическое, т.е. полусумма оснований. Значит, ее длина (5,6+2,4)/2 = 4м
несложный анализ картинки - трапеция со средней линией и диагональю - дает понимание, что диагональ делит среднюю линию пополам (нужно ли доказывать?) Значит разбивает ее на отрезки по 2 метра
средняя линия - полусумма оснований, значит две средние линии равны сумме оснований.
то есть нужно 48 (24*2) разбить на части, относящиеся как 2:3.
а это 2/5 и 3/5 от нее:
48*2/5 = 96/5 = 19,2
48*3/5 = 144/5 = 28,8
Второе тоже не сложно:
Снгова вспоминаем, что средняя линия - это среднее арифметическое, т.е. полусумма оснований. Значит, ее длина (5,6+2,4)/2 = 4м
несложный анализ картинки - трапеция со средней линией и диагональю - дает понимание, что диагональ делит среднюю линию пополам (нужно ли доказывать?)
Значит разбивает ее на отрезки по 2 метра
Ура!)