из точки М к плоскости a проведены две взаимно перпендикулярные наклонные МА = 3, МВ = 4. найдите расстояние от точки М до плоскости a если данная плоскость составляет с плоскостью АВМ угол арксинус 5/6
Объем пирамиды: V=(1/3)*So*H, где So - площадь основания пирамиды, H - высота пирамиды. Объем и высота нам даны, найдем площадь основания. So = 48*3/4 = 36 ед². Пирамида правильная, значит в основании лежит квадрат со стороной а = √36 = 6ед, а вершина пирамиды проецируется в центр основания - точку пересечения его диагоналей. Боковые грани нашей пирамиды - равные равнобедренные треугольники. Найдем высоту грани (апофему) из прямоугольного треугольника, образованного высотой пирамиды, половиной стороны основания (катеты) и апофемой (гипотенуза). Ап = √(3²+4²) =5ед.
Тогда площадь одной боковой грани равна Sгр=(1/2)*а*Ап или Sгр=(1/2)*6*5 = 15ед², а площадь боковой поверхности равна
Площадь квадрата, вписанного в круг, равна 16 см². Найти площадь сегмента, основанием которого является сторона квадрата.
1. Находим сторону квадрата: S=a² => a=√S = √16 = 4 (см) 2. Находим диагональ квадрата, которая является диаметром описанного круга: D²=2a² => D=√(2a²) = √32 = 4√2 (см) 3. Находим площадь круга: S₁= 1/4 πD² = 8π = 25,12 (см²) 4. Площадь четырех искомых сегментов круга равна разности между площадью круга и площадью вписанного квадрата: 4S' = S₁ - S = 25,12 - 16 = 9,12 S' = 9,12 : 4 = 2,28 (см²) ответ: 2,28 см²
Объем пирамиды: V=(1/3)*So*H, где So - площадь основания пирамиды, H - высота пирамиды. Объем и высота нам даны, найдем площадь основания. So = 48*3/4 = 36 ед². Пирамида правильная, значит в основании лежит квадрат со стороной а = √36 = 6ед, а вершина пирамиды проецируется в центр основания - точку пересечения его диагоналей. Боковые грани нашей пирамиды - равные равнобедренные треугольники. Найдем высоту грани (апофему) из прямоугольного треугольника, образованного высотой пирамиды, половиной стороны основания (катеты) и апофемой (гипотенуза). Ап = √(3²+4²) =5ед.
Тогда площадь одной боковой грани равна Sгр=(1/2)*а*Ап или Sгр=(1/2)*6*5 = 15ед², а площадь боковой поверхности равна
Sбок = 4*Sгр. = 60 ед².
ответ: Sбок = 60 ед².
1. Находим сторону квадрата: S=a² => a=√S = √16 = 4 (см)
2. Находим диагональ квадрата, которая является диаметром описанного круга:
D²=2a² => D=√(2a²) = √32 = 4√2 (см)
3. Находим площадь круга:
S₁= 1/4 πD² = 8π = 25,12 (см²)
4. Площадь четырех искомых сегментов круга равна разности между площадью круга и площадью вписанного квадрата:
4S' = S₁ - S = 25,12 - 16 = 9,12
S' = 9,12 : 4 = 2,28 (см²)
ответ: 2,28 см²