Из точки S провиден перпендикулярно SB к плоскости треугольника АВС. АВ = 13 см, АС = 14 см, ВС = 15 см. Расставание от точки S до прямой кухни равное расстояние отрезка SD = 20 см. Докажи, что BD перпенидулярен ас
1. это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки 2. это сумма длин всех его сторон 3.которые совпадают при наложении 4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы 5.это прямая, пересекающую другую прямую под углом 90 градусов 6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3 7.это прямая проходящая через вершину угла и делящая его пополам. 3 8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3 9.у которого две стороны равны 10.боковые 11.у которого все стороны равны 12. в равнобедренном треугольники углы при основании равны 13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой 14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны 15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны 16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны. 17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки 18. это точка, от которой расположены все точки окружности 19. отрезок соединяющий центр окружности с любой точкой окружности 20. это хорда проходящая через центр 21. это отрезок соединяющие любые две точки окружности
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
2. это сумма длин всех его сторон
3.которые совпадают при наложении
4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы
5.это прямая, пересекающую другую прямую под углом 90 градусов
6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3
7.это прямая проходящая через вершину угла и делящая его пополам. 3
8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3
9.у которого две стороны равны
10.боковые
11.у которого все стороны равны
12. в равнобедренном треугольники углы при основании равны
13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой
14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны
15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны
16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны.
17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки
18. это точка, от которой расположены все точки окружности
19. отрезок соединяющий центр окружности с любой точкой окружности
20. это хорда проходящая через центр
21. это отрезок соединяющие любые две точки окружности
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).