1. Пусть меньшее основание трапеции - х, тогда большее основание х + 6. 2. Площадь трапеции равна произведению полусуммы ее оснований на высоту:. Т.е.: x 8 = 120
2x+6 = 30 2x=24 x=12 3. Меньшее основание трапеции 12 см, большее 12 + 6 = 18 см 4. Опустим из вершины трапеции перпендикуляр к ее большему основанию (см. рисунок). Нужно узнать сторону с. Мы видим, что получился прямоугольный треугольник. Нам нужно найти его гипотенузу, зная катеты. Больший катет треугольника равен высоте - 8 см. Меньший катет равен 18 - 12 = 6 см. 5. По теореме Пифагора находим с: с = √6² + 8² = √100 = 10 см
есть теорема - если диагонали четырехугольника в точке пересечения делятся пополам то это параллелограмм. Док-во - четырехугольник АВСД, АС и ВД диагонали, О-пересечение диагоналей, АО=СО, ВО=ДО, треугольник АОВ=треугольник СОД по двум сторонам (АО=СО, ВО=ДО) и углу между ними (уголАОВ=уголСОД как вертикальные) значит АВ=СД, уголВАО=уголДСО - это внутренние разносторонние углы, если при пересечении двух прямых третьей прямой внутренние разносторонние углы равны то прямые параллельны, АВ параллельна СД, если в четырехугольнике две стороны попарно равны и параллельны то четырехугольник - параллелограмм, АВСД-параллелограмм, также можно доказать что АД=ВС, АД параллельно ВС, АВ+ВС=13,6, периметр АВСД=2*(АВ+ВС)=2*13,6=27,2
2. Площадь трапеции равна произведению полусуммы ее оснований на высоту:. Т.е.:
x 8 = 120
2x+6 = 30
2x=24
x=12
3. Меньшее основание трапеции 12 см, большее 12 + 6 = 18 см
4. Опустим из вершины трапеции перпендикуляр к ее большему основанию (см. рисунок). Нужно узнать сторону с. Мы видим, что получился прямоугольный треугольник. Нам нужно найти его гипотенузу, зная катеты. Больший катет треугольника равен высоте - 8 см. Меньший катет равен 18 - 12 = 6 см.
5. По теореме Пифагора находим с:
с = √6² + 8² = √100 = 10 см