Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
Ну соответственно начертим параллелограм,угол А=60,значит угол В=180-60=120 т.к. сумма углов при одной стороне 180 градусов. За расстояние между вершиной В принимаем перпендикуляр Р ,опущенный на биссектрису К угла С.Угол С=60,так как противоположные углы в параллелограмме равны.
Теперь рассмотрим треугольник ВРК(который прямоугольный(уголВРС=90гр),в этом треугольнике угол ВСР=30 т.к. его делит биссектриса.,а сторона лежащая против угла в 30 гр. равна половине гипотенузы т.е ВР=16:2=8
расстояние от В до биссектрисы =8
Аналогично с вершиной Д ,рассмотрим треугольник СРД ,,ДР =10:2=5 расстояние от Д до биссектрисы =5
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
За расстояние между вершиной В принимаем перпендикуляр Р ,опущенный на биссектрису К угла С.Угол С=60,так как противоположные углы в параллелограмме равны.
Теперь рассмотрим треугольник ВРК(который прямоугольный(уголВРС=90гр),в этом треугольнике угол ВСР=30 т.к. его делит биссектриса.,а сторона лежащая против угла в 30 гр. равна половине гипотенузы т.е ВР=16:2=8
расстояние от В до биссектрисы =8
Аналогично с вершиной Д ,рассмотрим треугольник СРД ,,ДР =10:2=5
расстояние от Д до биссектрисы =5