В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
uma12
uma12
15.01.2020 11:32 •  Геометрия

Изображен правильный тетраэдр dabc, площадь боковой поверхности которого равна 108√3см².точки t и o - середины ребер dc и da соответственно. в треугольник dto вписана окружность. вычислите площадь сектора, ограниченного двумя радиусами, проведенными в точки касания, и другой окружности, большей 180°

Показать ответ
Ответ:
Иван66665
Иван66665
21.07.2020 15:17
Площадь боковой поверхности правильного тетраэдра равна:
Sбок = (3/4)√3а², где а - длина его стороны.
108√3 =  (3/4)√3а²
Находим а = √(108*4/3) = √(36*4) = 6*2 = 12 см.
Стороны треугольника ДОТ равны половине а, то есть в = 12/2 = 6 см,
Радиус окружности, вписанной в правильный треугольник, равен:
r = b / (2√3) = 6 / (2√3) = 3 / √3 = √3 см.
Радиусы в точки касания делят окружность на 3 дуги, градусная мера которых составляет 360 / 3 = 120°.
Площадь сектора, ограниченного двумя радиусами, проведенными в точки касания, и другой окружности, большей 180° -это 2/3 площади круга: S = (2/3)πr² = π*(2*(√3)²/3=2π см².
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота