Изобразите прямую и отметьте точку , расположенную на расстояний 4 см от этой прямой. С циркуля с центром в точке проведите окружность радиусом 3 см. Как расположены относительно друг от друга прямая и окружность?
В треугольнике АВС известно, что АВ = ВС = 13см, АС = 10см.К кругу вписанному в этот треугольник, проведена касательная, которая параллельна основанию АС и пересекает сторону АВ и ВС в точках М и К соответственно. Вычислить площадь треугольника МВК.
Высота тр-ка АВС Н = √13²-5²=√144=12 cм
Из подобия треугольников найдем радиус вписанной окружности
AB/(AC/2)=(Н-r)/r
13r = 5(12-r)
13r+5r=60
18r=60
r = 3⅓ см
Высота тр-ка МВК h=H-2r = 12-20/3 = 16/3 см
Из подобия тр-ков МК/AC=h/H, MK=10*(16/3)/12 = 40/9 см
Объяснение:
линейная ф-ция у=kх+b
прямая а имеет координаты (-2;0), (-1;2), подставляем в уравнение
первую точку 0= -2k+b b=2k
вторую точку 2= -k+b b=k+2
2к=к+2
к=2, b=2+2=4
значит уравнение прямой а выглядит как у=2х+2
прямая b имеет координаты (0;0), (-1;2), подставляем в уравнение
первую точку 0= 0*к+ b=0
вторую точку 2= -k+0 к= -2
значит уравнение прямой b выглядит как у= -2х
прямая с имеет координаты (-2;0), (2; -4), подставляем в уравнение
первую точку 0= -2k+b b=2k
вторую точку -4= 2k+b b= -4 - 2к
2к= -4 - 2к
4к= -4, к= -1 b= 2*(-1)= -2
значит уравнение прямой а выглядит как у= -х-2
В треугольнике АВС известно, что АВ = ВС = 13см, АС = 10см.К кругу вписанному в этот треугольник, проведена касательная, которая параллельна основанию АС и пересекает сторону АВ и ВС в точках М и К соответственно. Вычислить площадь треугольника МВК.
Высота тр-ка АВС Н = √13²-5²=√144=12 cм
Из подобия треугольников найдем радиус вписанной окружности
AB/(AC/2)=(Н-r)/r
13r = 5(12-r)
13r+5r=60
18r=60
r = 3⅓ см
Высота тр-ка МВК h=H-2r = 12-20/3 = 16/3 см
Из подобия тр-ков МК/AC=h/H, MK=10*(16/3)/12 = 40/9 см
S = ½MK*h = 40*16/(2*9*3)= 320/27 = 11+23/27 cм²