Так как треугольник равнобедренный, то центр окружности О лежит посредине стороны АС, тогда ВО- высота, медиана и биссектриса треугольника АВС. Точка К - точка пересечения DE и ВО. АDВО - прямоугольная трапеция, у которой нижнее основание АО=r (r-радиус окружности), верхнее основание DК=14/2=7, меньшая диагональ ОD=r, боковая сторона АD=30 и высота КО=h. В этой трапеции опустим высоту DН=KO, тогда АH=АO-НО=АO-DК или AH=r-7 DH²=OD²-DК² или h²=r²-7²=r²-49 AH²=AD²-DH² или АН²=30²-h²=900-h²=900-r²+49=949-r² Приравниваем АН и получаем 949-r²=(r-7)² 2r²-14r-900=0 r²-7r-450=0 D=49+1800=1849=43² r=(7+43)/2=25 см Так как треугольники АВО и DBK подобны по 2 углам (углы АОВ=DKB=90, угол АВО -общий), то коэффициент подобия к=DK/AO=7/25 Тогда DВ/AВ=7/25, а DВ=АВ-АD=АВ-30 25(АВ-30)=7АВ 18АВ=750 АВ=750/18=125/3
С параллельного переноса вдоль оснований трапеций сдвинем AC так, чтобы угол DC'B стал прямым. При этом сумма "оснований" не меняется, т.к. AA' = CC'; с очевидностью не меняется и высота (=расстояние между параллельными прямыми). Получившийся четырехугольник A'BC'D - квадрат (доказать это можно, например, так: треугольники ADA' и CBC' равны (AB = BC, AA' = CC', BCC' = ADD'), тогда угол BA'D прямой, тогда A'BC'D - прямоугольник, т.к. диагонали перпендикулярны, то квадрат). Но для квадрата утверждение задачи очевидно.
Точка К - точка пересечения DE и ВО.
АDВО - прямоугольная трапеция, у которой нижнее основание АО=r (r-радиус окружности), верхнее основание DК=14/2=7, меньшая диагональ ОD=r, боковая сторона АD=30 и высота КО=h. В этой трапеции опустим высоту DН=KO, тогда
АH=АO-НО=АO-DК или AH=r-7
DH²=OD²-DК² или h²=r²-7²=r²-49
AH²=AD²-DH² или АН²=30²-h²=900-h²=900-r²+49=949-r²
Приравниваем АН и получаем
949-r²=(r-7)²
2r²-14r-900=0
r²-7r-450=0
D=49+1800=1849=43²
r=(7+43)/2=25 см
Так как треугольники АВО и DBK подобны по 2 углам (углы АОВ=DKB=90, угол АВО -общий), то коэффициент подобия к=DK/AO=7/25
Тогда DВ/AВ=7/25, а DВ=АВ-АD=АВ-30
25(АВ-30)=7АВ
18АВ=750
АВ=750/18=125/3