Т.к. площадь параллелограмма равна произведению высоты на сторону, к которой она проведена
S АВСД =АВ·ВД
АВ найдем из прямоугольного треугольника АВД
АВ= 108:9:2 =6 см
АД=√(АВ²+ВД²)=√117см
2.
Если АВ=СD
Опустим из вершины В к АД высоту h
Расстояние между вершиной угла при большем основании и точкой пересечения высоты с большим основанием в равнобедренной трапеции равно полуразности оснований.
(30-14):2=8
h=√(144-64)=√80=4 см√5
S=4√5·(30+14):2=88√5 см²
3.
В исходном Δ KMN и построенном Δ NMР вершина общая и высота у них общая. Для того, чтобы площадь треугольника NMР была в два раза меньше площади Δ KMN, основание МР в Δ NMР должно быть в два раза меньше основания КN в Δ KMN,
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых AB = A1B1, ∠A = ∠A1, ∠B = ∠B1 (рис. 83, а), и докажем, что эти треугольники равны.
Мысленно наложим треугольник ABC так, чтобы вершина A совместилась с вершиной A1, сторона AB – с равной ей стороной A1B1, а вершина C и C1 оказались по одну сторону от прямой A1B1 (рис. 83, б).
Так как ∠A = ∠A1 и ∠B = ∠B1, то сторона AC наложится на луч A1C1, а сторона BC – на луч B1C1. Поэтому вершина C – общая точка сторон AC и BC – совместится с общей точкой лучей A1C1 и B1C1, т. е. с точкой C1 (рис. 83, в). Из этого следует, что стороны AC и BC совместятся соответственно со сторонами A1C1 и B1C1. Итак, треугольники полностью совместятся, и, следовательно, они равны. Теорема доказана.
1.
Т.к. площадь параллелограмма равна произведению высоты на сторону, к которой она проведена
S АВСД =АВ·ВД
АВ найдем из прямоугольного треугольника АВД
АВ= 108:9:2 =6 см
АД=√(АВ²+ВД²)=√117см
2.
Если АВ=СD
Опустим из вершины В к АД высоту h
Расстояние между вершиной угла при большем основании и точкой пересечения высоты с большим основанием в равнобедренной трапеции равно полуразности оснований.
(30-14):2=8
h=√(144-64)=√80=4 см√5
S=4√5·(30+14):2=88√5 см²
3.
В исходном Δ KMN и построенном Δ NMР вершина общая и высота у них общая. Для того, чтобы площадь треугольника NMР была в два раза меньше площади Δ KMN, основание МР в Δ NMР должно быть в два раза меньше основания КN в Δ KMN,
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых AB = A1B1, ∠A = ∠A1, ∠B = ∠B1 (рис. 83, а), и докажем, что эти треугольники равны.
Мысленно наложим треугольник ABC так, чтобы вершина A совместилась с вершиной A1, сторона AB – с равной ей стороной A1B1, а вершина C и C1 оказались по одну сторону от прямой A1B1 (рис. 83, б).
Так как ∠A = ∠A1 и ∠B = ∠B1, то сторона AC наложится на луч A1C1, а сторона BC – на луч B1C1. Поэтому вершина C – общая точка сторон AC и BC – совместится с общей точкой лучей A1C1 и B1C1, т. е. с точкой C1 (рис. 83, в). Из этого следует, что стороны AC и BC совместятся соответственно со сторонами A1C1 и B1C1. Итак, треугольники полностью совместятся, и, следовательно, они равны. Теорема доказана.