Рисуете рисунок. У меня основание AC. По условию 2d=ac, ac=4r. Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника. S=1/2*h*a S=p*r а-сторона треугольника, р-полупериметр. Значит p*r=1/2*h*a Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r. p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r * Можно разделить на 4r и умножить на 2 обе части. Слева останется r+5, а справа Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
ВМ - медиана, следовательно, АМ=МС=2. Пусть точка пересечения окружности и ВС будет Н. ВН=СН. Угол ВНМ опирается на диаметр, следовательно, он прямой, и МН - высота треугольника ВМС. Но она же и медиана, т.к. ВН=СН, следовательно, треугольник ВМС - равнобедренный и ВМ=МС=2 Медиана треугольника АВС равна половине длины основания. Это один из признаков прямоугольного треугольника. Треугольник АВС прямоугольный, АС в нем - гипотенуза. Половина гипотенузы и медиана в нем является радиусами описанной окружности.
Чтобы найти r, вам нужно приравнять 2 формулы площади треугольника.
S=1/2*h*a
S=p*r
а-сторона треугольника, р-полупериметр.
Значит p*r=1/2*h*a
Нам нужно все выразить через что-то одно. В данном случае все легко выражается через r. h=100-4r квадрат и все это под корнем (теорема Пифа). a=4r.
p=(ab+ac+bc)/2. У нас это (4r+20)/2. Подставляем
(4r+20)/2 * r = 1/2 * 4r *
Можно разделить на 4r и умножить на 2 обе части.
Слева останется r+5, а справа
Возведя в квадрат обе части, вы получите квадратное уравнение с корнями -5 и 3.
Пусть точка пересечения окружности и ВС будет Н.
ВН=СН.
Угол ВНМ опирается на диаметр, следовательно, он прямой, и
МН - высота треугольника ВМС. Но она же и медиана, т.к. ВН=СН, следовательно,
треугольник ВМС - равнобедренный и ВМ=МС=2
Медиана треугольника АВС равна половине длины основания. Это один из признаков прямоугольного треугольника.
Треугольник АВС прямоугольный, АС в нем - гипотенуза. Половина гипотенузы и медиана в нем является радиусами описанной окружности.