Известно, что точка пересечения серединных перпендикуляров сторон AB и BC треугольника ABC находится на стороне AC. Определи длину отрезков, в которых точка D делит сторону AC, если AC= 16 см. чему равно NC-?
Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, пространственный» и μετρέω — «измеряю») — это раздел геометрии, в котором изучаются свойства фигур в пространстве. Основными фигурами в пространстве являются точка, прямая и плоскость. В стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. Это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях задачи по стереометрии решаются путем рассмотрения различных плоскостей, в которых выполняются планиметрические законы. Не стоит путать этот раздел с планиметрией, поскольку в планиметрии изучаются свойства фигур на плоскости (свойства плоских фигур), а в стереометрии — свойства фигур в пространстве (свойства пространственных фигур).
многогранник джонсона — один из строго выпуклых многогранников, имеющих правильные грани, но не являющийся однородным[en] (то есть он не является правильным многогранником, архимедовым телом, призмой или антипризмой). многогранники названы именем нормана джонсона[en], который первым перечислил эти многогранники в 1966 году[1].
многогранник является одним из элементарных правильногранных многогранников, не получающихся манипуляций «отрежь и приклей» с правильными и архимедовыми телами, и хотя тело родственно икосаэдру, оно имеет четырёхкратную симметрию, а не трёхкратную.
тело можно получить соединением двух куполов, повёрнутых относительно друг друга.
многогранник джонсона — один из строго выпуклых многогранников, имеющих правильные грани, но не являющийся однородным[en] (то есть он не является правильным многогранником, архимедовым телом, призмой или антипризмой). многогранники названы именем нормана джонсона[en], который первым перечислил эти многогранники в 1966 году[1].
многогранник является одним из элементарных правильногранных многогранников, не получающихся манипуляций «отрежь и приклей» с правильными и архимедовыми телами, и хотя тело родственно икосаэдру, оно имеет четырёхкратную симметрию, а не трёхкратную.
тело можно получить соединением двух куполов, повёрнутых относительно друг друга.