В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tearprincess200225
tearprincess200225
03.01.2023 06:24 •  Геометрия

Известно, что три векторa a→, u→ и c→ разложены по векторам x→, y→ и z→ следующим образом:

a→ = 1x→ + −1y→ + 1z→;
u→ = 4x→ + −2y→ + −1z→;
c→ = −3x→ + 1y→ + 2z→.

Докажи, что векторы a→, u→ и c→ компланарны.

Показать ответ
Ответ:
svkalin
svkalin
30.12.2023 09:29
Для доказательства компланарности векторов a→, u→ и c→ нужно проверить, что эти векторы лежат в одной плоскости. Плоскость определяется двумя любыми векторами, лежащими в этой плоскости.

Для начала, найдем два вектора, лежащих в плоскости. Возьмем вектор a→ и умножим его на число 2:

2a→ = 2(1x→ + -1y→ + 1z→)
= 2x→ + -2y→ + 2z→

Теперь у нас есть еще один вектор, который будет лежать в плоскости. Поэтому, мы можем определить плоскость с помощью двух векторов:

x→, y→, z→, 2x→ + -2y→ + 2z→

Теперь осталось убедиться, что вектор u→ и вектор c→ также лежат в этой плоскости.

Подставим вектор u→ в уравнение для плоскости:

4x→ + -2y→ + -1z→ = k_1x→ + k_2y→ + k_3z→ + k_4(2x→ + -2y→ + 2z→)

Сгруппируем подобные слагаемые:

(4 - 2k_4)x→ + (-2 + 2k_4)y→ + (-1 + 2k_4)z→ = k_1x→ + k_2y→ + k_3z→

Таким образом, получаем систему уравнений:

4 - 2k_4 = k_1
-2 + 2k_4 = k_2
-1 + 2k_4 = k_3

Решив эту систему уравнений, найдем значения k_1, k_2 и k_3.

Теперь подставим вектор c→ в уравнение для плоскости:

-3x→ + y→ + 2z→ = k_1x→ + k_2y→ + k_3z→ + k_4(2x→ + -2y→ + 2z→)

Сгруппируем подобные слагаемые:

(-3 + 2k_4)x→ + (1 - 2k_4)y→ + (2 - 2k_4)z→ = k_1x→ + k_2y→ + k_3z→

Таким образом, получаем систему уравнений:

-3 + 2k_4 = k_1
1 - 2k_4 = k_2
2 - 2k_4 = k_3

Решив эту систему уравнений, найдем значения k_1, k_2 и k_3.

Если значения k_1, k_2 и k_3 совпадают со значениями, которые мы ранее нашли при подстановке вектора u→ в уравнение для плоскости, то векторы a→, u→ и c→ лежат в одной плоскости. Таким образом, они компланарны.

Если значения не совпадают, значит такой вектор u→ и вектор c→ не могут одновременно лежать в плоскости с вектором a→. В этом случае можно проверить компланарность векторов a→, u→ и c→ с помощью другого базиса плоскости или другого метода доказательства компланарности векторов.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота