Известны координаты вершин треугольника АВС: А(0; 3; 4), В(4; -1; 2), 0(1; 1; 2). Найдите длину его медианы, проведенной из вершины С, и расстояние от начала координат до центроида треугольника.
Пусть будет ромб АВСD, проведём диагонали, они пересекутся в точке Н. Диагонали ромба, как известно, перпендикулярны, к тому же точкой пересечения делятся пополам, значит, ВН=HD, АН=НС=АС\2=2. Тогда ВН= Кстати, все четыре получившихся треугольника равны по трём сторонам. Синус угла АВН = , тогда сам угол равен 41 градус 49 минут. Второй острый угол этого треугольника равен 48 градусов 11 минут. Тогда угол B = угол D = 2*(41 градус 49 минут)=83 градуса 38 минут. Угол А = угол С = 2*(48 градусов 11 минут)=96 градусов 22 минуты. ответ: 83 градуса 38 минут и 96 градусов 22 минуты.
Кстати, все четыре получившихся треугольника равны по трём сторонам. Синус угла АВН = , тогда сам угол равен 41 градус 49 минут. Второй острый угол этого треугольника равен 48 градусов 11 минут. Тогда угол B = угол D = 2*(41 градус 49 минут)=83 градуса 38 минут.
Угол А = угол С = 2*(48 градусов 11 минут)=96 градусов 22 минуты.
ответ: 83 градуса 38 минут и 96 градусов 22 минуты.
1. Сумма углов параллелограмма, прилегающих к одной стороне, составляет 180°.
Пусть ∠К=х°, тогда ∠М=х+30°. Составим уравнение:
х+х+30=180; 2х+30=180; 2х=150; х=75.
∠К=75°, ∠М=75+30=105°.
∠Р=∠К=75°; ∠Т=∠М=105° как противолежащие углы параллелограмма.
2. Полупериметр р (КМРТ)=400:2=200 см. Пусть КТ=х см, тогда КМ=х-5 см. Составим уравнение:
х+х-5=200; 2х=205; х=102,5;
КТ=102,5 см; КМ=102,5-5=97,5 см;
МР=КТ=102,5 см;
РТ=КМ=102,5-5=97,5 см. (как противолежащие стороны параллелограмма)
3. Периметр КМРТ=180 см. Пусть КМ=4х см, КТ=5х см. Составим уравнение:
(4х+5х)*2=180; 9х*2=180; 18х=180; х=10.
КМ=10*4=40 см, КТ=10*5=50 см; РТ=КМ=40 см; МР=КТ=50 см. (как противолежащие стороны параллелограмма).