Joyelle derma smooth joyelle derma revive joyelle derma advanced joyelle derma excel each of these formulas is designed to treat as specific skin condition. for example, joyelle derma advanced targets psoriasis and acts as a psoriasis treatment system. on the other hand, joyelle derma excel treats the symptoms of eczema so that you can achieve a beautiful and clear skin surface that is free from redness and irritation. as you can tell, these formulas are well-equipped to enhance your skin and ensure that you have adequate support. very few brands on the market focus on various skin conditions so when you opt for this one, you can get the relief and support that you need. joyelle derma with renuvica cream joyelle derma is packaged with renuvica cream, making this a complete anti-aging skincare product line.
решение
первая
сумма всег углов тр-ка равна 180 градусов, поэтому разделим 180 пропорционально числам 2,3,4.
1) 180 : (2+3+4) =20 градусов приходится на одну часть
2) 20*2 =40 градусов первый угол
3) 20*3 =60 градусов -второй угол
4) 20*4 =80 градусов третий угол
вторая
1) угол между касательной ас и хордой ав равен половине дуги ав, то есть дуга ав содержит 75*2 =150 градусов
2) центральный угол аов измеряется дугой ав и равен 150 градусов
ответ < аов =150 градусов
третья
треугольники равны по стороне ас ( общая сторона) и двум углам, так как
1) < вас = < асв ( в равнобедренном тр-ке углы при основании равны)
2) < дас =< асе ( по свойству биссектрисы, она делит угол пополам)
∠ВАС = ∠ВСА = 30 ° ; ∠АВС = 120° .
Объяснение:
По условию :
Δ АВС - равнобедренный , следовательно:
Боковые стороны равны ⇒ АВ=ВС = 14 см
Углы при основании равны :
АС - основание ⇒ ∠BAC (∠BAD) = ∠BCA (∠BCD)
BD =7 см - высота к основанию АС ⇒ является медианой и биссектрисой :
∠BDA = ∠BDC = 90° ( т.к. BD - высота)
AD = DC = АС/2 (т. к. BD - медиана)
∠ABD = ∠CBD (т. к. BD - биссектриса)
ΔBDA = ΔBDC - прямоугольные треугольники
Решение.
1) ΔBAD
По условию катет BD = 7 см , гипотенуза АВ = 14 см , следовательно :
BD = 1/2 * AB = 1/2 * 14 = 7 см
Если катет равен половине гипотенузы, то угол лежащий против этого катета равен 30° ⇒∠DAB (∠ BAC) = 30°
Проверим по определению синуса:
sin A = 7/14 = 1/2 ⇒ ∠BAC (∠BAD ) = ∠BCA (∠BCD) = 30°
2) ΔАВС :
Сумма углов любого треугольника = 180°
∠АВС = 180° - (∠ВАС + ∠ВСА)
∠АВС = 180 - 2*30 = 120 °