Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
2. М = 58, Т - 32
8. 19
14.
20. В = 65, А - 25
26. А = 24, С = 66
Объяснение:
2. Сначала находим часть угла К = 90 - 32 = 58. Затем в нижнем треугольнике: 180 - 90 - 58 = 32. Затем верхний угол: 180 - 90 - 32 = 58
8. Косинус 60 градусов (отношение прилежащего катета к гипотенузе): 1/2. Значит, 1/2 = х/38⇒ х = 19
14. Нет вопроса. Непонятно, что надо найти.
20. На рисунке показано, что отрезок СС1 делит угол пополам, значит, каждый из них равен 90/2=45. Угол В = 180 - 70 - 45 = 65. Угол А = 180 - 65 - 90 = 25
26. Плохо видно рисунок. Примем отрезок ВК за биссектрису. 21 - градусная мера угла между биссектрисой и высотой. Определим углы, которые образует биссектриса на стороне АС. Угол KLB = 90, угол LBK = 21, значит угол BKL = 180 - 21 -90 = 69, а угол BKA = 180 - 69 = 111.
Отсюда угол А = 180 - 45 - 111 = 24, а угол С = 180 - 24 -90 = 66
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0