К окружности проведены касательные CA и CB (B и C - точки касания). Найдите градусную меру угла ACB, если градусная мера угла AOB = 108 градусов. Плз , я бы решил да времени мало
Площадь полной поверхности призмы равна сумме площади боковой поверхности и площади двух оснований. Основание призмы равно половине равностороннего треугольника, т.к. один из углов прямой, другой равен 30°, а третий, как следствие, 60°. Следовательно, площадь двух оснований призмы равна площади полного равностороннего треугольника с высотой 8. Площадь равностороннего треугольника, выраженная через высоту, S=h ² : √ 3= 64 : √ 3 Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания. Высота равна 8, т.к. диагональ грани со сторонами, равными высоте и катету=8, образует со сторонами грани угол 45 градусов, и стороны грани равны. Дальнейшие вычисления особой сложности не представляют, сумеете сделать их самостоятельно.
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Площадь полной поверхности призмы равна сумме площади боковой поверхности и площади двух оснований.
Основание призмы равно половине равностороннего треугольника, т.к. один из углов прямой, другой равен 30°, а третий, как следствие, 60°.
Следовательно, площадь двух оснований призмы равна площади полного равностороннего треугольника с высотой 8.
Площадь равностороннего треугольника, выраженная через высоту,
S=h ² : √ 3= 64 : √ 3
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Высота равна 8, т.к. диагональ грани со сторонами, равными высоте и катету=8, образует со сторонами грани угол 45 градусов, и стороны грани равны.
Дальнейшие вычисления особой сложности не представляют, сумеете сделать их самостоятельно.
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см