Теорема. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гиптенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Пусть a и b - катеты, с - гипотенуза, х - длина перпендикуляра.
Боковые стороны трапеции ABCD равны соответственно 20 и 25, а верхнее основание равно 5. Биссектриса угла проходит через середину боковой стороны в 20 ед.. Найдите площадь трапеции.
2) Проведем МК║АD ⇒ РМ-средняя линия , АР=РВ=12,5 .
Тогда ∠DАМ=∠РМА как накрест лежащие , при АМ-секущей и ∠РАМ=∠DАМ ⇒ ∠РАМ=∠РМD ⇒ ΔАМР- равнобедренный и АР=РМ=12,5.
3) По т. о средней линии трапеции РМ= , 12,5= ,AD=20 .
4) Проведем СК║АВ , тогда АВСК-параллелограмм и СК=25.
Рассмотрим ΔКСD. Проверим т. обратную т. Пифагора :
25²=625 ; 15²+20²=225+400=625 , а 625=625 ⇒ΔКСD-прямоугольный и CD⊥AD ( см чертеж 2). Поэтому боковая сторона СD -высота.
5) S (трапеции) =1/2*h*(a+b) ; S (трапеции) =1/2*20*(20+5) =50 (ед²)
=============================
Теорема ,обратная т. Пифагора : Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник является прямоугольным.
15 см и 20 см
Объяснение:
Теорема. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гиптенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Пусть a и b - катеты, с - гипотенуза, х - длина перпендикуляра.
Тогда:
1) 9 : х = х : 16
х² = 144
х = 12 см
2) Первый катет (по теореме Пифагора):
а = √(9²+12²) = √(81+144) = √225 = 15 см
3) Второй катет:
b = √(16²+12²) = √(256+144) = √400 = 20 см
ПРОВЕРКА:
(9+16)² = 25² = 625
15² + 20² = 225 + 400 = 625
Квадрат гипотенузы равен сумме квадратов катетов
ответ: 15 см и 20 см
Боковые стороны трапеции ABCD равны соответственно 20 и 25, а верхнее основание равно 5. Биссектриса угла проходит через середину боковой стороны в 20 ед.. Найдите площадь трапеции.
Объяснение:
1) Пусть АВСD-трапеция, АВ=25 , ВС=5 ,СD=20 , АМ-биссектриса.
2) Проведем МК║АD ⇒ РМ-средняя линия , АР=РВ=12,5 .
Тогда ∠DАМ=∠РМА как накрест лежащие , при АМ-секущей и ∠РАМ=∠DАМ ⇒ ∠РАМ=∠РМD ⇒ ΔАМР- равнобедренный и АР=РМ=12,5.
3) По т. о средней линии трапеции РМ= , 12,5= ,AD=20 .
4) Проведем СК║АВ , тогда АВСК-параллелограмм и СК=25.
Рассмотрим ΔКСD. Проверим т. обратную т. Пифагора :
25²=625 ; 15²+20²=225+400=625 , а 625=625 ⇒ΔКСD-прямоугольный и CD⊥AD ( см чертеж 2). Поэтому боковая сторона СD -высота.
5) S (трапеции) =1/2*h*(a+b) ; S (трапеции) =1/2*20*(20+5) =50 (ед²)
=============================
Теорема ,обратная т. Пифагора : Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник является прямоугольным.