К плоскости α проведена наклонная АВ (А∈α). Длина наклонной равна 16 см, наклонная с плоскостью образует угол 60°. Вычисли, на каком расстоянии от плоскости находится точка В. В ответе записать значение, которое получилось под знаком корня.
Рассмотрим равносторонний треугольник ABC со стороной а. Проведём высоту BH. Известно, что высота равностороннего треугольника делит сторону, на которую она опущена, пополам. Тогда AH=CH=a/2. Рассмотрим прямоугольный треугольник ABH. В нём гипотенуза AB равна a, а катет AH равен a/2. По теореме Пифагора найдём катет BH - BH=√a²-(a/2)²=√a²-a²/4=√3a²/4=√3a/2.
Площадь треугольника равна половине произведения стороны на проведённую к неё высоту. Таким образом, S=1/2*AC*BH=1/2*a*√3a/2=√3a²/4, что и требовалось доказать.
Другой решения: площадь треугольника равна 1/2*a*b*sinC, где sinC - синус угла между соседними сторонами a и b. Тогда S=1/2*a*a*sin60=1/2*a²*√3/2=√3a²/4.
V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²
Площадь треугольника равна половине произведения стороны на проведённую к неё высоту. Таким образом, S=1/2*AC*BH=1/2*a*√3a/2=√3a²/4, что и требовалось доказать.
Другой решения: площадь треугольника равна 1/2*a*b*sinC, где sinC - синус угла между соседними сторонами a и b. Тогда S=1/2*a*a*sin60=1/2*a²*√3/2=√3a²/4.
Если a=2√2, то S=√3*(2√2)²/4=√3*8/4=2√3.
V=384 cm³
S=384 cm²
Объяснение:
1)Найдем объем правильной четырехугольной пирамиды:
V=1/3*a²*h, где а - сторона квадрата, лежащего в основании пирамиды. V=1/3*144*8=384 cm³.
2)Чтобы найти площадь поверхности пирамиды, нужно сложить площадь основания с площадью боковой грани взятой 4 раза.
Чтобы вычислить площадь боковой грани нужно найти высоту треугольника, который и является боковой гранью пирамиды. Найдем эту высоту по теореме Пифагора, как гипотенузу прямоугольного треугольника: SH²=6²+8²=100, SH=10.
Площадь боковой грани S= 1/2*12*10=60.
Площадь основания S=а²=144
Площадь поверхности пирамиды S=144+60*4=144+240=384 cm²