К/р по геометрии 9 класс
1.Найдите сумму внутренних углов выпуклого семиугольника.
2.Найдите длину дуги окружности с радиусом 6 см,если дуга опирается на центральный угол.
3.Площадь правильного четырёхугольника равна 36 см^2.Найдите длину окружности описанной вокруг него.
4.Длина дуги сектора равна 6 см,угол сектора равен 45 градусов.Найдите площадь сектора.
5.Сумма сторон правильного треугольника и шестиугольника описанных около одной окружности ,равна 8 см.Найдите периметр квадрата,вписанного в эту окружность.
В тр-ках ABC и ACD опустим перпендикуляры на сторону AC. Очевидно, они упадудт в одну точку, т. к. тр-ки равнобедренные. Назовем эту точку H. В тр-ке BDH угол BDH - прямой (т. к. BD перпендикулярна плоскости ACD).
Найдем BH: в тр-ке ABC по т-ме Пифагора BH^2+6^2=4*21; BH=4*sqrt(3) //sqrt - это знак корня, т. е. 4 корня из трех.
Найдем AD: в тр-ке ADC по т-ме Пифагора 2*AD^2=12^2; AD=6*sqrt(2). //Не забываем, что AD=AC.
Найдем DH исходя из площади тр-ка ADC: DH*12=AD*AC; DH*12=36*2; DH=6.
В прямоугольном тр-ке BDH (угол BDH - прямой) гипотенуза равна 4*sqrt(3), а катет HD=6. Отсюда угол BHD=arccos(6/(4*sqrt(3))=arccos(sqrt(3)/2)=pi/6=30градусов.
ответ: 30 градусов.
2. Поступаем аналогично 1-й задаче: вначале опускаем перпендикуляры BH и DH на сторону AC.
Далее по т-ме Пифагора находим DH:
DH^2=6^2+61; DH=sqrt(97)
Далее по т-ме Пифагора находим BH:
BH^2=10^2+6^2; BH=2sqrt(34).
Отсюда по т-ме косинусов в тр-ке DBH считаем BD:
BD^2=(2sqrt(34)^2+sqrt(97)^2-2*2sqrt(34)*sqrt(97)*cos(60))=
BD^2=136+97-2*sqrt(3298)=233-2sqrt(3298).
Далее можно упростить при желании.
Проверьте на всякий случай арифметику.