к сторонам AC и ВС треугольника ABC восстановлены серединные перпендикуляры , пересекающиеся в точке О ; АВ 20 см , угол АОВ 120 градусов . Найдите длину отрезка ОС
Отрежем от ромба его диагональю треугольник. Если ромб был АВСД, то берём треугольник АВС. Он равнобедренный, т.к. АВ=ВС. Значит отрезок, соединяющий середины сторон АВ и ВС является средней линией равнобедренного треугольника, а значит этот отрезок параллелен основанию АС. Аналогично повторяем рассуждения для треугольника AДС, и понимаем, что отрезок, соединяющий середины сторон АД и ДС есть средняя линия, значит он параллелен АС. Итак, имеем, что обе средние линии - треугольников АВС и АДС параллельны диагонали ромба АС, следовательно они параллельны друг другу.
Повторяем те же рассуждения для второй диагонали ромба - ВД, и так же получаем параллельность второй пары отрезков.
Следовательно, четырёхугольник, вершинами которого являются середины сторон ромба, является параллелограммом.
Далее, из симметрии ромба, замечаем, что обе диагонали этого получившегося четырёхугольника проходят через центр ромба, и равны между собой.
Параллелограмм, у которого диагонали равны - это и есть прямоугольник - что и требовалось доказать.
Ну, я бы так доказывал. Может кто-нибудь предложит более простой
ед².
Объяснение:Обозначим данную пирамиду буквами .
ед.
Проведём высоту . Точка - центр - точка пересечения, медиан, высот и биссектрис треугольника.
Проведём апофему (апофема - это высота боковой грани пирамиды, проведённая из вершины пирамиды) к стороне основания пирамиды.
Т.к. данная пирамида - правильная, треугольная ⇒ основание пирамиды - правильный треугольник.
.
Проведём высоту в .
Т.к. - равносторонний ⇒ - высота, медиана, биссектриса.
Высота и апофема имеют общее основание, а именно точку , т.к. - медиана, а апофема делит пополам (по свойству).
.
Рассмотрим :
- прямоугольный, так как - высота.
Найдём высоту по теореме Пифагора:
ед.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Точка O - пересечение медиан и делит их в отношении 2 : 1, считая от вершины.
ед.
ед.
Рассмотрим :
- прямоугольный, так как - высота.
Если угол прямоугольного треугольника равен , то напротив лежащий катет равен произведению меньшего катета на .
ед.
Найдём апофему по теореме Пифагора:
ед.
====================================================
полн. поверх. = S основ. + S бок.поверх.
осн. = ед².
бок. поверх. = ( осн. ), где - апофема.
осн. ед.
⇒ бок. поверх. = ед².
⇒ полн. поверх. = ед².
Аналогично повторяем рассуждения для треугольника AДС, и понимаем, что отрезок, соединяющий середины сторон АД и ДС есть средняя линия, значит он параллелен АС.
Итак, имеем, что обе средние линии - треугольников АВС и АДС параллельны диагонали ромба АС, следовательно они параллельны друг другу.
Повторяем те же рассуждения для второй диагонали ромба - ВД, и так же получаем параллельность второй пары отрезков.
Следовательно, четырёхугольник, вершинами которого являются середины сторон ромба, является параллелограммом.
Далее, из симметрии ромба, замечаем, что обе диагонали этого получившегося четырёхугольника проходят через центр ромба, и равны между собой.
Параллелограмм, у которого диагонали равны - это и есть прямоугольник - что и требовалось доказать.
Ну, я бы так доказывал. Может кто-нибудь предложит более простой