. К точке А (-3; 4): а) точка В на оси абсцисс;
б) точка C на оси ординат;
Найдите координаты симметричной точки.
№2. Точка A (3; 2) перемещается параллельно точке, а точка B (1; -2) перемещается параллельно точке. Найдите x и y.
№3. Даны A (1; 4) и B (-3; -4). Раздел AB:
а) по оси О;
б) Нарисуйте симметричную копию фигуры относительно точки C (-1; 0)
В основании лежит правильный тр-ник, для которого радиус описанной окружности в два раза больше радиуса описанной окружности. r=R/2.
ОК=ОВ/2=2а/2=а.
ЕК - апофема на сторону АС.
В тр-ке ЕКО ЕК²=ЕО²+ОК²=3а²+а²=4а²,
ЕК=2а - апофема.
б) ЕК/ОК=2а/а=2. В прямоугольном треугольнике ЕОК гипотенуза ЕК вдвое больше катета ОК, значит ∠КЕО=30°, следовательно ∠ЕКО=60° - угол между боковой гранью и основанием.
в) Площадь боковой поверхности: Sб=Р·l/2, где Р - периметр основания, l - апофема.
R=AB/√3 ⇒ AB=R√3=2a√3.
P=3AB=6a√3.
Sб=6a√3·2a/2=6a²√3 (ед²).
V = 96 см².
Объяснение:
Основание правильной четырехугольной пирамиды - квадрат. Так как углом между наклонной (высота пирамиды) и плоскостью (боковая грань пирамиды) являетс угол между этой наклонной и ее проекцией на плоскость, высота боковой грани (апофема) образует с высотой пирамиды угол 30° (дано). В правильной пирамиде ее вершина проецируется в центр основания (пересечение диагоналей квадрата), расстояние от которого до боковых сторон равно половине стороны квадрата.
Рассмотрим прямоугольный треугольник SOH, образованный апофемой SH (гипотенуза), высотой пирамиды (SO) и половиной стороны основания ОН (катеты). <ОСН=30° (дано).
По Пифагору SO² = SH² - OH².
Так как катет, лежащий против угла 30° равен половине гипотенузы, то SH = 2*OH и тогда SО² = 3*ОН² = 36 см => ОН = 2√3 см.
Сторона основания равна 2*ОН = 4√3, площадь основания равна
So = (4√3)² = 48 см². Тогда
V = (1/3)*So*H = (1/3)*48*6 = 96 см²