Сумма углов параллелограмма, прилежащих к одной стороне, составляет 180°.
Дан параллелограмм АВСД, где ∠А=х°, ∠Д=х+18°.
Тогда х+х+18=180
2х+18=180
2х=16
х=81
∠А=81°, ∠С=∠А=81°
∠В=∠Д=81+18=99°.
ответ: 81°, 99°, 81°, 99°
2.
ΔАМВ подобен ΔВМС ( по двум углам)
BC/AD=CD/MD
BC/20=8/10
10BC=160
BC=16
3. ответ: 8 см
Объяснение: ЕК, как высота, перпендикулярна DE ⇒ ∆ ЕFK прямоугольный. По т.Пифагора ЕК=√(EF²-KF²)√(36-4)=√32.
Треугольник DEK прямоугольный. DE=EK:sin45°=√32•√2/2=8 см
Или по т.Пифагора DE=√(2•DK²), т.к. второй острый угол ∆ DEK=45°, и DK=EK.
4.∠СDB=∠DBCкак накрест лежащие при параллельных прямых и секущей, но ∠АDВ = ∠ВDC(по условию) значит ΔВСD - равнобедренный, тогда ВС=СD=12, Опустим высоту СК. Тогда АК=ВС=12, КD=18-12=6. По теореме Пифагора находим СК. СК²=СD²-KD²=144-36=108, CK=√108=6√3, площадь равна (12+18)/2 ·6√3= =15·6√3=90√3
1.
Сумма углов параллелограмма, прилежащих к одной стороне, составляет 180°.
Дан параллелограмм АВСД, где ∠А=х°, ∠Д=х+18°.
Тогда х+х+18=180
2х+18=180
2х=16
х=81
∠А=81°, ∠С=∠А=81°
∠В=∠Д=81+18=99°.
ответ: 81°, 99°, 81°, 99°
2.
ΔАМВ подобен ΔВМС ( по двум углам)
BC/AD=CD/MD
BC/20=8/10
10BC=160
BC=16
3. ответ: 8 см
Объяснение: ЕК, как высота, перпендикулярна DE ⇒ ∆ ЕFK прямоугольный. По т.Пифагора ЕК=√(EF²-KF²)√(36-4)=√32.
Треугольник DEK прямоугольный. DE=EK:sin45°=√32•√2/2=8 см
Или по т.Пифагора DE=√(2•DK²), т.к. второй острый угол ∆ DEK=45°, и DK=EK.
4.∠СDB=∠DBCкак накрест лежащие при параллельных прямых и секущей, но ∠АDВ = ∠ВDC(по условию) значит ΔВСD - равнобедренный, тогда ВС=СD=12, Опустим высоту СК. Тогда АК=ВС=12, КD=18-12=6. По теореме Пифагора находим СК. СК²=СD²-KD²=144-36=108, CK=√108=6√3, площадь равна (12+18)/2 ·6√3= =15·6√3=90√3
5.
диагонали трапеции связаны со сторонами соотношением
d1²+d2²=2ab+ç²+d²
здесь а и b нижнее и верхнее основание трапеции
с и d боковые стороны равнобедренной трапеции с=d,
d1 и d2 диагонали трапеции d1=d2
так как по заданию размеры призмы даны площадью. от этого ничего не изменится.
площадь диагонального сечения вставим в формулу как длину диагонали. и так далее.
диагоналей трапеции 2.
Sд=320см² как d1 и d2
Sн=336см² как а
Sв=176см² как b
находим
Sбок
2×Sд²=2×Sн×Sв+2×Sбок²
площадь одной боковой стороны призмы
(не параллельная к другой боковой стороне)
Sбок=√(2× Sд²- 2×Sн×Sв)/2
Sбок=√(2×320² - 2×336×176)/2=
=√(204800 - 118272)/2=√86528/2=√43264=208см²
Sбок1=208 см2
двух Sбок=2×208=416 см²
площадь 4 боковых граней призмы
S=336+176+2×208=928 см²