(2; 1; -8), В(1; -5; 0), С(8; 1; -4). Докажите, что - равнобедренный и найдите длину средней линии треугольника, соединяющей середины боковых сторон.11. Даны точки А(0; 1; 2), В(; 1; 2), С(; 2; 1), D(0; 2; 1). Докажите, что АВСD – квадрат.12. Даны точки А(0; 4; 0), В(2; 0; 0), С(4; 0; 4), и D(2; 4; 4). Докажите, что АВСD – ромб.13. Даны точки А(-3; 1; 2) и В(1; -1; -2). Найдите координаты точки С, если .14. Даны точки А(2; 5; 8) и В(6; 1; 0). Найдите на оси ординат точку С, равноудаленную от А и В. ИЛИ ЖЕ13. С(x;y;z) x= (-3+1)/2= -1 y=(1+1)/2=1 z=(2+2)/2=2А
Не скажу, что это доказательство в виде теоремы. Скорее объяснение, которое легко запомнить и передать затем своими словами. Окружность называется вписанной в многоугольник, если стороны многоугольника являются для неё касательными. Очевидно, что не во всякий многоугольник можно вписать окружность. Но всякий многоугольник можно разделить на треугольники. А площадь треугольника можно найти половиной произведения стороны на высоту, проведенную к ней. S=0,5*h*a, где а - сторона треугольника, h- высота к ней. Для многоугольника его площадь - сумма площадей всех треугольников, на которые его можно разделить: S=S₁+S₂+ S₃ и т.д Высоты треугольников, на которые можно разделить описанный многоугольник, равны радиусу вписанной окружности, так как радиус перпендикулярен касательной в точке касания. . Тогда S=0,5*a₁*r+0,5*a₂*r+0,5*a₃* r+0,5*a₄*r и т.д. Вынесем общий множитель 0,5r за скобки⇒ S=r*0,5*(a₁+a₂+a₃+a₄+ an) Ясно, что 0,5*(a₁+a₂+a₃+a₄+an) - это полупериметр многоугольника Теперь можно площадь многоугольника, в который вписана окружность, записать как S=r*p, где r- радиус вписанной в многоугольник окружности, р- полупериметр этого многоугольника. Что и требовалось доказать. ----- [email protected]
ИЛИ ЖЕ13. С(x;y;z)
x= (-3+1)/2= -1
y=(1+1)/2=1
z=(2+2)/2=2А
Окружность называется вписанной в многоугольник, если стороны многоугольника являются для неё касательными.
Очевидно, что не во всякий многоугольник можно вписать окружность.
Но всякий многоугольник можно разделить на треугольники.
А площадь треугольника можно найти половиной произведения стороны на высоту, проведенную к ней.
S=0,5*h*a, где а - сторона треугольника, h- высота к ней.
Для многоугольника его площадь - сумма площадей всех треугольников, на которые его можно разделить:
S=S₁+S₂+ S₃ и т.д
Высоты треугольников, на которые можно разделить описанный многоугольник, равны радиусу вписанной окружности, так как радиус перпендикулярен касательной в точке касания. .
Тогда
S=0,5*a₁*r+0,5*a₂*r+0,5*a₃* r+0,5*a₄*r и т.д.
Вынесем общий множитель 0,5r за скобки⇒
S=r*0,5*(a₁+a₂+a₃+a₄+ an)
Ясно, что 0,5*(a₁+a₂+a₃+a₄+an) - это полупериметр многоугольника Теперь можно площадь многоугольника, в который вписана окружность, записать как
S=r*p, где r- радиус вписанной в многоугольник окружности, р- полупериметр этого многоугольника. Что и требовалось доказать.
-----
[email protected]