1). Построим описанную окружность с центром в т. М Угол ∠АМС - центральный, опирающийся на ту же дугу АС, что и угол ∠АВС. Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4 CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC => => BC = 2MC*cos15°
В усеченный конус можно вписать шар тогда и только тогда, когда образующая равна сумме радиусов оснований l=R+r, радиус шара Rш=H/2. Площадь боковой поверхности ус.конуса Sбок=πl(R+r)=πl² 10π=πl² l=√10 - это образующая Площадь полной поверхности ус.конуса Sполн=Sбок+πR²+πr² 18π=10π+π(R²+r²) R²+r²=8 Получается система уравнений: R+r=√10 R²+r²=8 R=√10-r (√10-r)²+r²=8 10-2√10r+r²+r²=8 r²-√10r+1=0 D=10-4=6 r=(√10-√6)/2 R=(√10+√6)/2 Теперь можно найти высоту усеченного конуса Н по т.Пифагора из прямоугольного треугольника, у которого гипотенуза l, 1 катет Н и 2 катет R-r=(√10+√6)/2-(√10-√6)/2=√6. Н²=l²-(R-r)²=√10²-√6²=4 H=2 Площадь поверхности шара Sш=4πRш²=4πН²/4=πН²=4π Разница Sполн-Sш=18π-4π=14π
Угол ∠АМС - центральный, опирающийся на ту же дугу АС,
что и угол ∠АВС.
Следовательно: ∠АМС = 2*∠АВС = 2*15 = 30°
В ΔМНС: CH = MC*sin30° = MC/2
Так как АВ = 2*МС, то: СН:АВ = МС/2 : 2MC = 1/4
CH:AB = 1:4
2). В ΔАВС: cos∠ABC = BC/AB = BC/2MC =>
=> BC = 2MC*cos15°
В ΔМНС: МН = МС*cos30° = MC*√3/2
Тогда:
Площадь боковой поверхности ус.конуса Sбок=πl(R+r)=πl²
10π=πl²
l=√10 - это образующая
Площадь полной поверхности ус.конуса Sполн=Sбок+πR²+πr²
18π=10π+π(R²+r²)
R²+r²=8
Получается система уравнений:
R+r=√10
R²+r²=8
R=√10-r
(√10-r)²+r²=8
10-2√10r+r²+r²=8
r²-√10r+1=0
D=10-4=6
r=(√10-√6)/2
R=(√10+√6)/2
Теперь можно найти высоту усеченного конуса Н по т.Пифагора из прямоугольного треугольника, у которого гипотенуза l, 1 катет Н и 2 катет
R-r=(√10+√6)/2-(√10-√6)/2=√6.
Н²=l²-(R-r)²=√10²-√6²=4
H=2
Площадь поверхности шара Sш=4πRш²=4πН²/4=πН²=4π
Разница Sполн-Sш=18π-4π=14π