Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания, то есть боковые грани пирамиды равны и наклонены относительно основания под одним углом. Сечение amb, площадь которого надо найти - равнобедренный треугольник с основанием ab и боковыми сторонами am и bm. Основание нам дано - это сторона основания пирамиды, равная 8. Боковые грани - равные равнобедренные треугольники. Значит углы при вершинах граней равны 36°, равны и все углы при основании граней (180°-36°):2 = 72°. В треугольнике asm <asm=36°(дано), <sam=36°(как половина угла sac=72°) и <amb=(180°-72°)=108°. Углы ams и amc смежные. Тогда <amc=180°-108°=72° и значит треугольник amc равнобедренный и am=ac=8. Но am=bm, а ac=ab. Значит сечение - правильный треугольник и его площадь равна: Sabm = (√3/4)*a², где а - сторона треугольника. Итак, Sabm = (√3/4)*64 = 16√3.
Задача на подобие треугольников. Сделаем рисунок по условию задачи и рассмотрим его. В треугольниках ВDЕ и АВС ∠ВЕD=∠ВСА как соответственные при параллельных прямых ВЕ и АС и секущей ВС. ∠ВDЕ=∠ВАС как соответственные углы при параллельных прямых DЕ и АС и секущей ВА. ∠В общий. ⇒ эти треугольники подобны. АВ:ВD=АС:DЕ и ВС:ВЕ=АС:DЕ Пусть ВD=х, а ВЕ=у. Тогда АВ:ВD=(х+7,2):х=16:10, откуда х=12 ( уравнение простое, решить его самостоятельно несложно) Точно так же (у+7,8):у=16:10, откуда у=13. Следовательно, ВD=12, DЕ=13 ( ед. длины)
Сечение amb, площадь которого надо найти - равнобедренный треугольник с основанием ab и боковыми сторонами am и bm. Основание нам дано - это сторона основания пирамиды, равная 8. Боковые грани - равные равнобедренные треугольники. Значит углы при вершинах граней равны 36°, равны и все углы при основании граней (180°-36°):2 = 72°.
В треугольнике asm <asm=36°(дано), <sam=36°(как половина угла sac=72°) и <amb=(180°-72°)=108°. Углы ams и amc смежные. Тогда <amc=180°-108°=72° и значит треугольник amc равнобедренный и am=ac=8. Но am=bm, а ac=ab. Значит сечение - правильный треугольник и его площадь равна:
Sabm = (√3/4)*a², где а - сторона треугольника.
Итак, Sabm = (√3/4)*64 = 16√3.
Сделаем рисунок по условию задачи и рассмотрим его.
В треугольниках ВDЕ и АВС
∠ВЕD=∠ВСА как соответственные при параллельных прямых ВЕ и АС и секущей ВС.
∠ВDЕ=∠ВАС как соответственные углы при параллельных прямых DЕ и АС и секущей ВА.
∠В общий. ⇒ эти треугольники подобны.
АВ:ВD=АС:DЕ и ВС:ВЕ=АС:DЕ
Пусть ВD=х, а ВЕ=у.
Тогда АВ:ВD=(х+7,2):х=16:10, откуда х=12 ( уравнение простое, решить его самостоятельно несложно)
Точно так же
(у+7,8):у=16:10, откуда у=13.
Следовательно, ВD=12, DЕ=13 ( ед. длины)