Какие из следующих утверждений верны?через точку не лежащую на данной прямой перпендикулярную этой прямой?отношение площадей подобной треугольников равна коофиценту подобия.площадь треугольника меньше произведения двух его сторон?
Сделайте рисунок к задаче. Он может выглядеть как угол комнаты - отрезки направлены в разные стороны.
Соедините концы отрезков А, В и С и проведите через них плоскость ( Через любые три точки пространства, не лежащие на одной прямой, можно провести одну и только одну плоскость.)
Обратите внимание на то, что при соединении свободных концов отрезков получились три треугольника:АОВ, ВОС и АОС.
Отрезки прямых, соединяющие середины сторон АО, ВО и ВС, соответственно параллельны сторонам АВ, ВС и АС как средние линии треугольников АОВ, ВОС и АОС. Проведенная через середины отрезков плоскость будет параллельна плоскости АВС :Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
1. Верно (свойство радиуса, проведённого в точку касания).
2. Неверно. Вписанный угол равен половине центрального соответствующего угла.
3. Неверно. Вписанный угол, опирающийся на полуокружность, равен 90° (так как полуокружность — это дуга в 180°, а градусная мера вписанного угла измеряется половиной градусной меры соответвующией дуги. Откуда вписанный угол равен 180° : 2 = 90°).
4. Верно (теорема о пересекающихся хорд в окружности).
5. Верно. Если расстояние от центра окружности до прямой больше радиуса, то у этой прямой и окружности нет общих точек.
7,499 см (расстояние от центра окружности до прямой) > 7,49 см (радиус окружности). Поэтому, по выше сказанному, у окружности и прямой нет общих точек.
6. Неверно. Такая дуга равна 30°*2 = 60° (смотрите в пункт 3).
7. Верно (свойство отрезков касательных, проведённых из одной точки).
8. Верно (по определению радиуса окружности).
9. Неверно. Прямая называется секущей по отношению к окружности только тогда, когда она имеет с окружностью две общие точки).
Сделайте рисунок к задаче. Он может выглядеть как угол комнаты - отрезки направлены в разные стороны.
Соедините концы отрезков А, В и С и проведите через них плоскость ( Через любые три точки пространства, не лежащие на одной прямой, можно провести одну и только одну плоскость.)
Обратите внимание на то, что при соединении свободных концов отрезков получились три треугольника:АОВ, ВОС и АОС.
Отрезки прямых, соединяющие середины сторон АО, ВО и ВС, соответственно параллельны сторонам АВ, ВС и АС как средние линии треугольников АОВ, ВОС и АОС. Проведенная через середины отрезков плоскость будет параллельна плоскости АВС :Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
Что и требовалось доказать.
1. Верно (свойство радиуса, проведённого в точку касания).
2. Неверно. Вписанный угол равен половине центрального соответствующего угла.
3. Неверно. Вписанный угол, опирающийся на полуокружность, равен 90° (так как полуокружность — это дуга в 180°, а градусная мера вписанного угла измеряется половиной градусной меры соответвующией дуги. Откуда вписанный угол равен 180° : 2 = 90°).
4. Верно (теорема о пересекающихся хорд в окружности).
5. Верно. Если расстояние от центра окружности до прямой больше радиуса, то у этой прямой и окружности нет общих точек.
7,499 см (расстояние от центра окружности до прямой) > 7,49 см (радиус окружности). Поэтому, по выше сказанному, у окружности и прямой нет общих точек.
6. Неверно. Такая дуга равна 30°*2 = 60° (смотрите в пункт 3).
7. Верно (свойство отрезков касательных, проведённых из одной точки).
8. Верно (по определению радиуса окружности).
9. Неверно. Прямая называется секущей по отношению к окружности только тогда, когда она имеет с окружностью две общие точки).
10. Верно (свойство касательных).