В параллелепипеде 6 граней, - по две противоположных, которые попарно равны между собой. Естественно, их диагонали также равны. В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения) В данном случае диагонали равны 30, 40 и 70 см. По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон. Здесь имеем "треугольник" и три длины, и 70=30+40. Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней. Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Две прямые, заданные уравнениями и , будут перпендикулярны тогда и только тогда, когда . Коэффициенты и называются угловыми коэффициентами. Мы имеем диагональ , которая лежит на прямой . Приведём уравнение этой прямой в нужный нам вид: . Здесь угловой коэффициент равен . Пусть диагональ лежит на прямой .Тогда, т.к. диагонали в квадрате перпендикулярны, , откуда . Т.е диагональ лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Исходя из этого составим уравнение: , откуда . Мы получили уравнение прямой, на которой лежит диагональ - это прямая или, что то же самое, .
Теперь к уравнениям сторон.
Две прямые, заданные уравнениями и , пересекаются под углом , тангенс которого равен . Причём при они перпендикулярны. Угол между диагональю и смежной стороной в квадрате равен . Пусть сторона лежит на прямой . Получается, нам нужно, чтобы прямая при пересечении с прямой образовывала угол в . (А сторона лежит на прямой .) Исходя из всего этого, составим и решим уравнение:
Мы получили, что сторона лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Получаем, что , откуда . Значит, сторона лежит на прямой .
Найдём координаты вершины - это точка пересечения диагонали и стороны :
Получили координаты вершины
Пусть прямая, на которой лежит сторона , имеет вид . Она перпендикулярна прямой, на которой лежит сторона . Отсюда, по вышеприведённому методу, найдём уравнение прямой, на которой лежит сторона :
Получили, что сторона лежит на прямой .
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение прямой, на которой лежит сторона :
Получили уравнение : .
Найдём координаты точки :
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение стороны CD:
В каждой вершине параллелепипеда сходятся смежные стороны трех граней, и их диагонали образуют треугольник. (см. рисунок вложения)
В данном случае диагонали равны 30, 40 и 70 см.
По теореме о неравенстве треугольников: длина любой стороны треугольника меньше суммы длин двух других сторон.
Здесь имеем "треугольник" и три длины, и 70=30+40.
Тогда меньшие стороны "лягут" на большую, и треугольник не получится, как и параллелепипед с такими диагоналями граней.
Не могут диагонали трех граней прямоугольного параллелепипеда иметь длины 30 см, 40 см и 70 см.
Мы имеем диагональ , которая лежит на прямой . Приведём уравнение этой прямой в нужный нам вид:
.
Здесь угловой коэффициент равен .
Пусть диагональ лежит на прямой .Тогда, т.к. диагонали в квадрате перпендикулярны, , откуда . Т.е диагональ лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Исходя из этого составим уравнение: , откуда . Мы получили уравнение прямой, на которой лежит диагональ - это прямая или, что то же самое, .
Теперь к уравнениям сторон.
Две прямые, заданные уравнениями и , пересекаются под углом , тангенс которого равен . Причём при они перпендикулярны.
Угол между диагональю и смежной стороной в квадрате равен . Пусть сторона лежит на прямой . Получается, нам нужно, чтобы прямая при пересечении с прямой образовывала угол в . (А сторона лежит на прямой .)
Исходя из всего этого, составим и решим уравнение:
Мы получили, что сторона лежит на прямой . Но мы также знаем, что эта прямая проходит через точку . Получаем, что , откуда . Значит, сторона лежит на прямой .
Найдём координаты вершины - это точка пересечения диагонали и стороны :
Получили координаты вершины
Пусть прямая, на которой лежит сторона , имеет вид . Она перпендикулярна прямой, на которой лежит сторона . Отсюда, по вышеприведённому методу, найдём уравнение прямой, на которой лежит сторона :
Получили, что сторона лежит на прямой .
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение прямой, на которой лежит сторона :
Получили уравнение : .
Найдём координаты точки :
параллельна , отсюда следует, что угловые коэффициенты этих прямых равны. Находим уравнение стороны CD:
Получили, что сторона лежит на прямой