У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Обозначим данный треугольник АВD.
Примем его боковые стороны равными а.
Проведем высоту ВН.
В равнобедренном треугольнике с углом при вершине 120° углы при основании равны 30°. ⇒
АН=DH=а•cos30°=a√3/2⇒ AD=a√3
Продлим медиану АМ на её длину до т.С.
АС=2 АМ=28.
Соединим В и D с т.С.
ВМ=DM по условию, АМ=МС по построению. Диагонали четырехугольника АВСD точкой пересечения делятся пополам. ⇒ АВСD – параллелограмм (по признаку).
По свойству параллелограмма сумма квадратов диагоналей равна сумме квадратов ВСЕХ его сторон.
Противоположные стороны параллелограмма равны.
АС²+BD²= 2 АВ²+2ВС²
28²+а²=2а²+6а²⇒
7а²=28•28
а²=4•4•7
а=4√7 см – длина боковых сторон треугольника.