Пусть ABCD – трапеция, CD = 2 см, АВ = 3 см, BD = 3 см и АС = 4 см. Чтобы известные элементы включить в один треугольник, перенесём диагональ BD на вектор DC в положение СВ'. Рассмотрим треугольник АСВ1. Так как ВВ'CD – параллелограмм, то В'С = 3 см, АВ' = АВ + ВВ' = АВ + CD = 5 см. Теперь известны все три стороны треугольника АВ'С. Так как АС²+ В'С²= АВ'²= 16+9=25, то треугольник АВ'С – прямоугольный, причем АСВ' = 90°. Отсюда непосредственно следует, что угол между диагоналями трапеции, равный углу АСВ', составляет 90°. Площадь трапеции, как и всякого четырёхугольника, равна половине произведения диагоналей на синус угла между ними. Отсюда площадь равна 1/2AC * BD * sin 90° = 1/2 * 4 * 3 * 1 = 6 см²
Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник
решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°