Обьем пирамиды равен длина боковой грани умножить на длина боковой грани умножить на высота пирамиды и делить это все на 2. найдем высоту, т к угол между апофемой (высотой боковой грани) и основанием равен 45 градусов, то синус 45 градусов равен н/10 (где н - высота) н=((корень из 2)/2)*10=5 корней из 2 теперь найдем половину основания: тангенс 45 градусов=высота/х (где х - половина основания) (тангенс 45 градусов равен 1) х= (5 корней из 2)/1 значит основание будет равно (5 корней из 2)*2=10 корней из 2 теперь находим обьем пирамиды ((10 корней из 2)*(10 корней из 2)*(5 корней из 2))/2= 500 корней из 2 (кубических сантиметров) ответ: 500 корней из 2 (см³)
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать