В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ludafrolova98
ludafrolova98
21.11.2020 10:08 •  Геометрия

Каково взаимное располажение прямои и окружности, если радиус окружности равен 3 см, а расстояний от центра окружности до прямои равна 2 см​

Показать ответ
Ответ:
AlexDid000
AlexDid000
27.05.2022 05:39
Выясним, о каком многоугольнике речь.
Из каждой вершины выпуклого n-угольника можно провести диагонали во все вершины , кроме 2-х смежных и самой себя, т.е. n-3 диагонали.
Однако, любая диагональ из А в С есть одновременно и диагональ из С в А. Поэтому, у выпуклого n-угольника число диагоналей d=n·(n-3)/2.
В то же время, по условиям задачи, у нашего многоугольника d=3n.
Решаем уравнение: 3n=n·(n-3)/2;  6n=n²-3n;  9n=n²; n=9
Таким образом, речь идет о 9-угольнике.
Поскольку правильный n-угольник можно представить, как n смыкающихся треугольников с общей вершиной, сумма всех внутренних углов правильного n-угольника равна n·180°-360°.
В данном случае, для 9-угольника: 9·180°-360°=1260°
0,0(0 оценок)
Ответ:
yulyatimonen
yulyatimonen
14.03.2023 06:33
Обозначим длину стороны AB за x (x ≥ 0). Вспомним формулу нахождения описанной около треугольника окружности через произведение сторон и площадь
R = \frac{AB \cdot BC \cdot AC}{4S_{\Delta ABC}}

\frac8{\sqrt{15}} = \frac{3 \cdot 4 \cdot x}{4S}
\frac8{\sqrt{15}} = \frac{3 \cdot x}{S}
8S=3x\sqrt{15}

Найдем площадь треугольника по формуле Герона
S=\sqrt{p(p-AB)(p-AC)(p-BC)}, где p=\frac{AB+AC+BC}2

p=\frac{3+4+x}2=\frac{7+x}2

S=\sqrt{\frac{7+x}2(\frac{7+x}2-3)(\frac{7+x}2-4)(\frac{7+x}2-x)}=
=\sqrt{\frac{7+x}2\cdot\frac{1+x}2\cdot\frac{x-1}2\cdot\frac{7-x}2}=\sqrt{(\frac72+\frac x2)(\frac72-\frac x2)(\frac x2+\frac12)(\frac x2-\frac12)}=
\sqrt{(\frac{49}4-\frac{x^2}4)(\frac{x^2}4-\frac14)}=\frac14\sqrt{(49-x^2)(x^2-1)}

Подставим получившееся значение в первое уравнение
8\cdot\frac14\sqrt{(49-x^2)(x^2-1)}=3x\sqrt{15}
2\sqrt{(49-x^2)(x^2-1)}=3x\sqrt{15}
(2\sqrt{(49-x^2)(x^2-1)})^2=(3x\sqrt{15})^2
4(49-x^2)(x^2-1)=9x\cdot15
196x^2-196-4x^4+4x^2=135x
200x^2-196-4x^4=135x
4x^4-65x^2+196=0

Замена x^2=t,\ t \geq 0

4t^2-65t+196=0
D=65^2-4\cdot4\cdot196=4225-3136=1089=33^2
t_1=\frac{65+33}{2\cdot4}=12,25
t_2=\frac{65-33}{2\cdot4}=4

Вернемся к замене
1)\ x^2=12,25
x=\pm3,5
2)\ x^2=4
x=\pm2
x \geq 0 \Rightarrow x \in \{3,5;\ 2\}

Найдем больший угол треугольника по теореме косинусов
1) Стороны: 3; 4; 3,5
\[A{C^2} = B{C^2} + A{B^2} - 2 \cdot BC \cdot AB \cdot \cos \angle B\]
4^2 = 3,5^2 + 3^2 - 2 \cdot 3,5 \cdot 3 \cdot \cos \angle B

16 = 12,25 + 9 - 21\cos \angle B

21\cos \angle B=5,25

\cos \angle B=0,25
Значит ∠B < 90° ⇒ ΔABC - остроугольный. 

2) Стороны: 3; 4; 2
\[A{C^2} = B{C^2} + A{B^2} - 2 \cdot BC \cdot AB \cdot \cos \angle B\]
4^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos \angle B
16 = 4 + 9 - 12\cos \angle B
12\cos \angle B =-3&#10;
\cos \angle B =-0,25&#10;
Значит ∠B > 90° ⇒ ΔABC - тупоугольный. 

По условию треугольник тупоугольный, значит AB = 2, а P = 3 + 4 + 2 = 9

ответ: 9
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота