Утверждение "центр описанной окружности лежит на стороне" , верно только для прямоугольного треугольника , это середина гипотенузы , т.е. эта точка одновременно лежит на медиане проведенной из прямого угла. Этот треугольник не равнобедренный (катеты не равны) _следует из утверждения "центры вписанной и описанной окружностей не лежат ни на одной из высот треугольника" (данная медиана не совпадает с высотой) .
ответ : 3 разносторонний * * * * * * * * * * * * * * * * * * * "Центр вписанной окружности лежит внутри треугольника" ничего не дает _верно для всех типов треугольников.
1) По формуле S(∆) = ½*h(a)*a, где а - какая-то сторона ∆ АВС, h(a) - высота, проведенная к этой стороне. Тогда S(∆ ABC) = ½*h(a)*a = ½*11*7 = 77/2 = 38.5 см². ответ: S(∆ ABC) = 38.5 см². 2) Найдём второй катет по теореме Пифагора. Пусть катеты равны a и b, а гипотенуза равна с, причем длины всех сторон положительны. Тогда по теореме Пифагора а² + b² = с², теперь подставим числа: 12² + b² = 13², то есть b² = 13² - 12² = (13 - 12)(13 + 12) = 1*25 = 25. Тогда b = √25 = 5, т.к. длина > 0. Значит, катеты данного прямоугольного ∆ равны 12 и 5 см. Тогда по той же формуле (т.к. катеты в прямоугольном ∆ перпендикулярны, то S(прямоугольного ∆) равна полупроизведению его катетов) S(∆) = ½*h(a)*a = ½*b*a = ½*12*5 = 6*5 = 30 см². ответ: второй катет равен 5 см, S(прямоугольного ∆) = 30 см².
ответ : 3 разносторонний
* * * * * * * * * * * * * * * * * * *
"Центр вписанной окружности лежит внутри треугольника" ничего не дает _верно для всех типов треугольников.