В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
innesa260778
innesa260778
12.01.2022 20:29 •  Геометрия

Какой наибольший радиус может иметь окружность с центром в точке p(-2; 3), если она касается окружности, заданной уравнением (x-6)²+(y-9)²=225

Показать ответ
Ответ:
t4rka
t4rka
24.09.2020 11:27
Окружность (x-6)^2 + (y-9)^2 = 225 имеет центр Q(6, 9) и радиус R = 15.
Окружность с центром P(-2; 3) и радиусом r задается уравнением
(x+2)^2 + (y-3)^2 = r^2
Если эти две окружности касаются друг друга в 1 точке, то система
имеет только одно решение.
{ (x-6)^2 + (y-9)^2 = 225
{ (x+2)^2 + (y-3)^2 = r^2
Раскроем скобки
{ x^2 - 12x + 36 + y^2 - 18y + 81 = 225
{ x^2 + 4x + 4 + y^2 - 6y + 9 = r^2
Упростим
{ x^2 - 12x + y^2 - 18y = 225 - 36 - 81 = 108
{ x^2 + 4x + y^2 - 6y = r^2 - 4 - 9 = r^2 - 13 
Вычтем из 2 уравнения 1 уравнение
4x - 6y + 12x + 18y = r^2 - 13 - 108
16x + 12y = r^2 - 121 = (r - 11)(r + 11)
Очевидно, максимальный радиус равен 11
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота