Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn
Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).
Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.
Объяснение:
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
списано вот здесь
)
\vec{AB}-\vec{DC}+\vec{BC} =\vec{AB}+\vec{BC}+\vec{CD} =\vec{AD}AB−DC+BC=AB+BC+CD=AD
Воспользовались переместительным законом, также тем, что \vec{XY}=-\vec{YX}XY=−YX и правилом многоугольника: \vec{XX_1}+\vec{X_1X_2}+...+\vec{X_{n-1}X_n} =\vec{XX_n}XX1+X1X2+...+Xn−1Xn=XXn
2)
\begin{gathered}\vec{AD}-\vec{BA}+\vec{DB}+\vec{DC}=\vec{AD}+\vec{DB}-\vec{BA}+\vec{DC} ==\vec{AB}+\vec{AB}+\vec{DC} =2\vec{AB}+\vec{AB}=3\vec{AB}\end{gathered}AD−BA+DB+DC=AD+DB−BA+DC==AB+AB+DC=2AB+AB=3AB
Использовали те же факты, что в первом пункте и не только. Так, например \vec{AB}=\vec{DC}AB=DC поскольку AB║DC, как противоположные стороны параллелограмма, по тем же соображениям AB=DC и векторы направлены в одну сторону (т. A и т. D лежат в одной полуплоскости от BC).
3)
\begin{gathered}\vec{AB}+\vec{CA}-\vec{DA}=\vec{DC}+\vec{CA}+\vec{AD}==\vec{AD}+\vec{DC}+\vec{CA}=\vec{AA} =0\end{gathered}AB+CA−DA=DC+CA+AD==AD+DC+CA=AA=0
Использовали всё то, что было во втором пункте (например \vec{AB}=\vec{DC}AB=DC ) и ещё определение нулевого вектора: вектор начало и конец которого в одной точке.
ответы:
1)\vec{AD};\; 2)\,3\vec{AB};\; 3)\,0.1)AD;2)3AB;3)0.